Metamath Proof Explorer


Theorem itsclc0yqsollem1

Description: Lemma 1 for itsclc0yqsol . (Contributed by AV, 6-Feb-2023)

Ref Expression
Hypotheses itscnhlc0yqe.q Q=A2+B2
itscnhlc0yqe.t T=2BC
itscnhlc0yqe.u U=C2A2R2
itsclc0yqsollem1.d D=R2QC2
Assertion itsclc0yqsollem1 ABCRT24QU=4A2D

Proof

Step Hyp Ref Expression
1 itscnhlc0yqe.q Q=A2+B2
2 itscnhlc0yqe.t T=2BC
3 itscnhlc0yqe.u U=C2A2R2
4 itsclc0yqsollem1.d D=R2QC2
5 2 oveq1i T2=2BC2
6 2cnd ABCR2
7 simpl2 ABCRB
8 simpl3 ABCRC
9 7 8 mulcld ABCRBC
10 6 9 mulcld ABCR2BC
11 sqneg 2BC2BC2=2BC2
12 10 11 syl ABCR2BC2=2BC2
13 6 9 sqmuld ABCR2BC2=22BC2
14 sq2 22=4
15 14 a1i ABCR22=4
16 7 8 sqmuld ABCRBC2=B2C2
17 15 16 oveq12d ABCR22BC2=4B2C2
18 12 13 17 3eqtrd ABCR2BC2=4B2C2
19 5 18 eqtrid ABCRT2=4B2C2
20 1 3 oveq12i QU=A2+B2C2A2R2
21 simpl1 ABCRA
22 21 sqcld ABCRA2
23 7 sqcld ABCRB2
24 22 23 addcld ABCRA2+B2
25 8 sqcld ABCRC2
26 simpr ABCRR
27 26 sqcld ABCRR2
28 22 27 mulcld ABCRA2R2
29 24 25 28 subdid ABCRA2+B2C2A2R2=A2+B2C2A2+B2A2R2
30 22 23 25 adddird ABCRA2+B2C2=A2C2+B2C2
31 22 23 28 adddird ABCRA2+B2A2R2=A2A2R2+B2A2R2
32 30 31 oveq12d ABCRA2+B2C2A2+B2A2R2=A2C2+B2C2-A2A2R2+B2A2R2
33 23 25 mulcld ABCRB2C2
34 22 25 mulcld ABCRA2C2
35 22 28 mulcld ABCRA2A2R2
36 23 27 mulcld ABCRB2R2
37 22 36 mulcld ABCRA2B2R2
38 35 37 addcld ABCRA2A2R2+A2B2R2
39 34 33 addcomd ABCRA2C2+B2C2=B2C2+A2C2
40 23 22 27 mul12d ABCRB2A2R2=A2B2R2
41 40 oveq2d ABCRA2A2R2+B2A2R2=A2A2R2+A2B2R2
42 39 41 oveq12d ABCRA2C2+B2C2-A2A2R2+B2A2R2=B2C2+A2C2-A2A2R2+A2B2R2
43 33 34 38 42 assraddsubd ABCRA2C2+B2C2-A2A2R2+B2A2R2=B2C2+A2C2-A2A2R2+A2B2R2
44 29 32 43 3eqtrd ABCRA2+B2C2A2R2=B2C2+A2C2-A2A2R2+A2B2R2
45 20 44 eqtrid ABCRQU=B2C2+A2C2-A2A2R2+A2B2R2
46 45 oveq2d ABCR4QU=4B2C2+A2C2-A2A2R2+A2B2R2
47 19 46 oveq12d ABCRT24QU=4B2C24B2C2+A2C2-A2A2R2+A2B2R2
48 4cn 4
49 48 a1i ABCR4
50 simp1 ABCA
51 50 sqcld ABCA2
52 51 adantr ABCRA2
53 1 24 eqeltrid ABCRQ
54 27 53 mulcld ABCRR2Q
55 54 25 subcld ABCRR2QC2
56 4 55 eqeltrid ABCRD
57 49 52 56 mulassd ABCR4A2D=4A2D
58 34 38 subcld ABCRA2C2A2A2R2+A2B2R2
59 33 33 58 subsub4d ABCRB2C2-B2C2-A2C2A2A2R2+A2B2R2=B2C2B2C2+A2C2-A2A2R2+A2B2R2
60 33 subidd ABCRB2C2B2C2=0
61 60 oveq1d ABCRB2C2-B2C2-A2C2A2A2R2+A2B2R2=0A2C2A2A2R2+A2B2R2
62 0cnd ABCR0
63 62 34 38 subsub2d ABCR0A2C2A2A2R2+A2B2R2=0+A2A2R2+A2B2R2-A2C2
64 38 34 subcld ABCRA2A2R2+A2B2R2-A2C2
65 64 addlidd ABCR0+A2A2R2+A2B2R2-A2C2=A2A2R2+A2B2R2-A2C2
66 61 63 65 3eqtrd ABCRB2C2-B2C2-A2C2A2A2R2+A2B2R2=A2A2R2+A2B2R2-A2C2
67 59 66 eqtr3d ABCRB2C2B2C2+A2C2-A2A2R2+A2B2R2=A2A2R2+A2B2R2-A2C2
68 22 28 36 adddid ABCRA2A2R2+B2R2=A2A2R2+A2B2R2
69 22 23 27 adddird ABCRA2+B2R2=A2R2+B2R2
70 69 eqcomd ABCRA2R2+B2R2=A2+B2R2
71 70 oveq2d ABCRA2A2R2+B2R2=A2A2+B2R2
72 68 71 eqtr3d ABCRA2A2R2+A2B2R2=A2A2+B2R2
73 72 oveq1d ABCRA2A2R2+A2B2R2-A2C2=A2A2+B2R2A2C2
74 24 27 mulcld ABCRA2+B2R2
75 22 74 25 subdid ABCRA2A2+B2R2C2=A2A2+B2R2A2C2
76 73 75 eqtr4d ABCRA2A2R2+A2B2R2-A2C2=A2A2+B2R2C2
77 1 a1i ABCRQ=A2+B2
78 77 oveq2d ABCRR2Q=R2A2+B2
79 27 24 mulcomd ABCRR2A2+B2=A2+B2R2
80 78 79 eqtrd ABCRR2Q=A2+B2R2
81 80 oveq1d ABCRR2QC2=A2+B2R2C2
82 4 81 eqtrid ABCRD=A2+B2R2C2
83 82 eqcomd ABCRA2+B2R2C2=D
84 83 oveq2d ABCRA2A2+B2R2C2=A2D
85 67 76 84 3eqtrd ABCRB2C2B2C2+A2C2-A2A2R2+A2B2R2=A2D
86 85 oveq2d ABCR4B2C2B2C2+A2C2-A2A2R2+A2B2R2=4A2D
87 33 58 addcld ABCRB2C2+A2C2-A2A2R2+A2B2R2
88 49 33 87 subdid ABCR4B2C2B2C2+A2C2-A2A2R2+A2B2R2=4B2C24B2C2+A2C2-A2A2R2+A2B2R2
89 57 86 88 3eqtr2rd ABCR4B2C24B2C2+A2C2-A2A2R2+A2B2R2=4A2D
90 47 89 eqtrd ABCRT24QU=4A2D