Metamath Proof Explorer


Theorem itsclc0yqsollem1

Description: Lemma 1 for itsclc0yqsol . (Contributed by AV, 6-Feb-2023)

Ref Expression
Hypotheses itscnhlc0yqe.q Q = A 2 + B 2
itscnhlc0yqe.t T = 2 B C
itscnhlc0yqe.u U = C 2 A 2 R 2
itsclc0yqsollem1.d D = R 2 Q C 2
Assertion itsclc0yqsollem1 A B C R T 2 4 Q U = 4 A 2 D

Proof

Step Hyp Ref Expression
1 itscnhlc0yqe.q Q = A 2 + B 2
2 itscnhlc0yqe.t T = 2 B C
3 itscnhlc0yqe.u U = C 2 A 2 R 2
4 itsclc0yqsollem1.d D = R 2 Q C 2
5 2 oveq1i T 2 = 2 B C 2
6 2cnd A B C R 2
7 simpl2 A B C R B
8 simpl3 A B C R C
9 7 8 mulcld A B C R B C
10 6 9 mulcld A B C R 2 B C
11 sqneg 2 B C 2 B C 2 = 2 B C 2
12 10 11 syl A B C R 2 B C 2 = 2 B C 2
13 6 9 sqmuld A B C R 2 B C 2 = 2 2 B C 2
14 sq2 2 2 = 4
15 14 a1i A B C R 2 2 = 4
16 7 8 sqmuld A B C R B C 2 = B 2 C 2
17 15 16 oveq12d A B C R 2 2 B C 2 = 4 B 2 C 2
18 12 13 17 3eqtrd A B C R 2 B C 2 = 4 B 2 C 2
19 5 18 syl5eq A B C R T 2 = 4 B 2 C 2
20 1 3 oveq12i Q U = A 2 + B 2 C 2 A 2 R 2
21 simpl1 A B C R A
22 21 sqcld A B C R A 2
23 7 sqcld A B C R B 2
24 22 23 addcld A B C R A 2 + B 2
25 8 sqcld A B C R C 2
26 simpr A B C R R
27 26 sqcld A B C R R 2
28 22 27 mulcld A B C R A 2 R 2
29 24 25 28 subdid A B C R A 2 + B 2 C 2 A 2 R 2 = A 2 + B 2 C 2 A 2 + B 2 A 2 R 2
30 22 23 25 adddird A B C R A 2 + B 2 C 2 = A 2 C 2 + B 2 C 2
31 22 23 28 adddird A B C R A 2 + B 2 A 2 R 2 = A 2 A 2 R 2 + B 2 A 2 R 2
32 30 31 oveq12d A B C R A 2 + B 2 C 2 A 2 + B 2 A 2 R 2 = A 2 C 2 + B 2 C 2 - A 2 A 2 R 2 + B 2 A 2 R 2
33 23 25 mulcld A B C R B 2 C 2
34 22 25 mulcld A B C R A 2 C 2
35 22 28 mulcld A B C R A 2 A 2 R 2
36 23 27 mulcld A B C R B 2 R 2
37 22 36 mulcld A B C R A 2 B 2 R 2
38 35 37 addcld A B C R A 2 A 2 R 2 + A 2 B 2 R 2
39 34 33 addcomd A B C R A 2 C 2 + B 2 C 2 = B 2 C 2 + A 2 C 2
40 23 22 27 mul12d A B C R B 2 A 2 R 2 = A 2 B 2 R 2
41 40 oveq2d A B C R A 2 A 2 R 2 + B 2 A 2 R 2 = A 2 A 2 R 2 + A 2 B 2 R 2
42 39 41 oveq12d A B C R A 2 C 2 + B 2 C 2 - A 2 A 2 R 2 + B 2 A 2 R 2 = B 2 C 2 + A 2 C 2 - A 2 A 2 R 2 + A 2 B 2 R 2
43 33 34 38 42 assraddsubd A B C R A 2 C 2 + B 2 C 2 - A 2 A 2 R 2 + B 2 A 2 R 2 = B 2 C 2 + A 2 C 2 - A 2 A 2 R 2 + A 2 B 2 R 2
44 29 32 43 3eqtrd A B C R A 2 + B 2 C 2 A 2 R 2 = B 2 C 2 + A 2 C 2 - A 2 A 2 R 2 + A 2 B 2 R 2
45 20 44 syl5eq A B C R Q U = B 2 C 2 + A 2 C 2 - A 2 A 2 R 2 + A 2 B 2 R 2
46 45 oveq2d A B C R 4 Q U = 4 B 2 C 2 + A 2 C 2 - A 2 A 2 R 2 + A 2 B 2 R 2
47 19 46 oveq12d A B C R T 2 4 Q U = 4 B 2 C 2 4 B 2 C 2 + A 2 C 2 - A 2 A 2 R 2 + A 2 B 2 R 2
48 4cn 4
49 48 a1i A B C R 4
50 simp1 A B C A
51 50 sqcld A B C A 2
52 51 adantr A B C R A 2
53 1 24 eqeltrid A B C R Q
54 27 53 mulcld A B C R R 2 Q
55 54 25 subcld A B C R R 2 Q C 2
56 4 55 eqeltrid A B C R D
57 49 52 56 mulassd A B C R 4 A 2 D = 4 A 2 D
58 34 38 subcld A B C R A 2 C 2 A 2 A 2 R 2 + A 2 B 2 R 2
59 33 33 58 subsub4d A B C R B 2 C 2 - B 2 C 2 - A 2 C 2 A 2 A 2 R 2 + A 2 B 2 R 2 = B 2 C 2 B 2 C 2 + A 2 C 2 - A 2 A 2 R 2 + A 2 B 2 R 2
60 33 subidd A B C R B 2 C 2 B 2 C 2 = 0
61 60 oveq1d A B C R B 2 C 2 - B 2 C 2 - A 2 C 2 A 2 A 2 R 2 + A 2 B 2 R 2 = 0 A 2 C 2 A 2 A 2 R 2 + A 2 B 2 R 2
62 0cnd A B C R 0
63 62 34 38 subsub2d A B C R 0 A 2 C 2 A 2 A 2 R 2 + A 2 B 2 R 2 = 0 + A 2 A 2 R 2 + A 2 B 2 R 2 - A 2 C 2
64 38 34 subcld A B C R A 2 A 2 R 2 + A 2 B 2 R 2 - A 2 C 2
65 64 addid2d A B C R 0 + A 2 A 2 R 2 + A 2 B 2 R 2 - A 2 C 2 = A 2 A 2 R 2 + A 2 B 2 R 2 - A 2 C 2
66 61 63 65 3eqtrd A B C R B 2 C 2 - B 2 C 2 - A 2 C 2 A 2 A 2 R 2 + A 2 B 2 R 2 = A 2 A 2 R 2 + A 2 B 2 R 2 - A 2 C 2
67 59 66 eqtr3d A B C R B 2 C 2 B 2 C 2 + A 2 C 2 - A 2 A 2 R 2 + A 2 B 2 R 2 = A 2 A 2 R 2 + A 2 B 2 R 2 - A 2 C 2
68 22 28 36 adddid A B C R A 2 A 2 R 2 + B 2 R 2 = A 2 A 2 R 2 + A 2 B 2 R 2
69 22 23 27 adddird A B C R A 2 + B 2 R 2 = A 2 R 2 + B 2 R 2
70 69 eqcomd A B C R A 2 R 2 + B 2 R 2 = A 2 + B 2 R 2
71 70 oveq2d A B C R A 2 A 2 R 2 + B 2 R 2 = A 2 A 2 + B 2 R 2
72 68 71 eqtr3d A B C R A 2 A 2 R 2 + A 2 B 2 R 2 = A 2 A 2 + B 2 R 2
73 72 oveq1d A B C R A 2 A 2 R 2 + A 2 B 2 R 2 - A 2 C 2 = A 2 A 2 + B 2 R 2 A 2 C 2
74 24 27 mulcld A B C R A 2 + B 2 R 2
75 22 74 25 subdid A B C R A 2 A 2 + B 2 R 2 C 2 = A 2 A 2 + B 2 R 2 A 2 C 2
76 73 75 eqtr4d A B C R A 2 A 2 R 2 + A 2 B 2 R 2 - A 2 C 2 = A 2 A 2 + B 2 R 2 C 2
77 1 a1i A B C R Q = A 2 + B 2
78 77 oveq2d A B C R R 2 Q = R 2 A 2 + B 2
79 27 24 mulcomd A B C R R 2 A 2 + B 2 = A 2 + B 2 R 2
80 78 79 eqtrd A B C R R 2 Q = A 2 + B 2 R 2
81 80 oveq1d A B C R R 2 Q C 2 = A 2 + B 2 R 2 C 2
82 4 81 syl5eq A B C R D = A 2 + B 2 R 2 C 2
83 82 eqcomd A B C R A 2 + B 2 R 2 C 2 = D
84 83 oveq2d A B C R A 2 A 2 + B 2 R 2 C 2 = A 2 D
85 67 76 84 3eqtrd A B C R B 2 C 2 B 2 C 2 + A 2 C 2 - A 2 A 2 R 2 + A 2 B 2 R 2 = A 2 D
86 85 oveq2d A B C R 4 B 2 C 2 B 2 C 2 + A 2 C 2 - A 2 A 2 R 2 + A 2 B 2 R 2 = 4 A 2 D
87 33 58 addcld A B C R B 2 C 2 + A 2 C 2 - A 2 A 2 R 2 + A 2 B 2 R 2
88 49 33 87 subdid A B C R 4 B 2 C 2 B 2 C 2 + A 2 C 2 - A 2 A 2 R 2 + A 2 B 2 R 2 = 4 B 2 C 2 4 B 2 C 2 + A 2 C 2 - A 2 A 2 R 2 + A 2 B 2 R 2
89 57 86 88 3eqtr2rd A B C R 4 B 2 C 2 4 B 2 C 2 + A 2 C 2 - A 2 A 2 R 2 + A 2 B 2 R 2 = 4 A 2 D
90 47 89 eqtrd A B C R T 2 4 Q U = 4 A 2 D