Metamath Proof Explorer


Theorem ixxlb

Description: Extract the lower bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014) (Revised by AV, 12-Sep-2020)

Ref Expression
Hypotheses ixx.1 O=x*,y*z*|xRzzSy
ixxub.2 w*B*w<BwSB
ixxub.3 w*B*wSBwB
ixxub.4 A*w*A<wARw
ixxub.5 A*w*ARwAw
Assertion ixxlb A*B*AOBsupAOB*<=A

Proof

Step Hyp Ref Expression
1 ixx.1 O=x*,y*z*|xRzzSy
2 ixxub.2 w*B*w<BwSB
3 ixxub.3 w*B*wSBwB
4 ixxub.4 A*w*A<wARw
5 ixxub.5 A*w*ARwAw
6 1 elixx1 A*B*wAOBw*ARwwSB
7 6 3adant3 A*B*AOBwAOBw*ARwwSB
8 7 biimpa A*B*AOBwAOBw*ARwwSB
9 8 simp1d A*B*AOBwAOBw*
10 9 ex A*B*AOBwAOBw*
11 10 ssrdv A*B*AOBAOB*
12 infxrcl AOB*supAOB*<*
13 11 12 syl A*B*AOBsupAOB*<*
14 simp1 A*B*AOBA*
15 simprr A*B*AOBwA<ww<supAOB*<w<supAOB*<
16 11 ad2antrr A*B*AOBwA<ww<supAOB*<AOB*
17 qre ww
18 17 rexrd ww*
19 18 ad2antlr A*B*AOBwA<ww<supAOB*<w*
20 simprl A*B*AOBwA<ww<supAOB*<A<w
21 14 ad2antrr A*B*AOBwA<ww<supAOB*<A*
22 21 19 4 syl2anc A*B*AOBwA<ww<supAOB*<A<wARw
23 20 22 mpd A*B*AOBwA<ww<supAOB*<ARw
24 13 ad2antrr A*B*AOBwA<ww<supAOB*<supAOB*<*
25 simpll2 A*B*AOBwA<ww<supAOB*<B*
26 simp3 A*B*AOBAOB
27 n0 AOBwwAOB
28 26 27 sylib A*B*AOBwwAOB
29 13 adantr A*B*AOBwAOBsupAOB*<*
30 simpl2 A*B*AOBwAOBB*
31 infxrlb AOB*wAOBsupAOB*<w
32 11 31 sylan A*B*AOBwAOBsupAOB*<w
33 8 simp3d A*B*AOBwAOBwSB
34 9 30 3 syl2anc A*B*AOBwAOBwSBwB
35 33 34 mpd A*B*AOBwAOBwB
36 29 9 30 32 35 xrletrd A*B*AOBwAOBsupAOB*<B
37 28 36 exlimddv A*B*AOBsupAOB*<B
38 37 ad2antrr A*B*AOBwA<ww<supAOB*<supAOB*<B
39 19 24 25 15 38 xrltletrd A*B*AOBwA<ww<supAOB*<w<B
40 19 25 2 syl2anc A*B*AOBwA<ww<supAOB*<w<BwSB
41 39 40 mpd A*B*AOBwA<ww<supAOB*<wSB
42 7 ad2antrr A*B*AOBwA<ww<supAOB*<wAOBw*ARwwSB
43 19 23 41 42 mpbir3and A*B*AOBwA<ww<supAOB*<wAOB
44 16 43 31 syl2anc A*B*AOBwA<ww<supAOB*<supAOB*<w
45 24 19 xrlenltd A*B*AOBwA<ww<supAOB*<supAOB*<w¬w<supAOB*<
46 44 45 mpbid A*B*AOBwA<ww<supAOB*<¬w<supAOB*<
47 15 46 pm2.65da A*B*AOBw¬A<ww<supAOB*<
48 47 nrexdv A*B*AOB¬wA<ww<supAOB*<
49 qbtwnxr A*supAOB*<*A<supAOB*<wA<ww<supAOB*<
50 49 3expia A*supAOB*<*A<supAOB*<wA<ww<supAOB*<
51 14 13 50 syl2anc A*B*AOBA<supAOB*<wA<ww<supAOB*<
52 48 51 mtod A*B*AOB¬A<supAOB*<
53 13 14 52 xrnltled A*B*AOBsupAOB*<A
54 8 simp2d A*B*AOBwAOBARw
55 14 adantr A*B*AOBwAOBA*
56 55 9 5 syl2anc A*B*AOBwAOBARwAw
57 54 56 mpd A*B*AOBwAOBAw
58 57 ralrimiva A*B*AOBwAOBAw
59 infxrgelb AOB*A*AsupAOB*<wAOBAw
60 11 14 59 syl2anc A*B*AOBAsupAOB*<wAOBAw
61 58 60 mpbird A*B*AOBAsupAOB*<
62 13 14 53 61 xrletrid A*B*AOBsupAOB*<=A