Metamath Proof Explorer


Theorem jm3.1lem1

Description: Lemma for jm3.1 . (Contributed by Stefan O'Rear, 16-Oct-2014)

Ref Expression
Hypotheses jm3.1.a φA2
jm3.1.b φK2
jm3.1.c φN
jm3.1.d φKYrmN+1A
Assertion jm3.1lem1 φKN<A

Proof

Step Hyp Ref Expression
1 jm3.1.a φA2
2 jm3.1.b φK2
3 jm3.1.c φN
4 jm3.1.d φKYrmN+1A
5 eluzelre K2K
6 2 5 syl φK
7 3 nnnn0d φN0
8 6 7 reexpcld φKN
9 2z 2
10 uzid 222
11 9 10 ax-mp 22
12 uz2mulcl 22K22K2
13 11 2 12 sylancr φ2K2
14 uz2m1nn 2K22K1
15 13 14 syl φ2K1
16 15 nnred φ2K1
17 16 7 reexpcld φ2K1N
18 eluzelre A2A
19 1 18 syl φA
20 uz2m1nn K2K1
21 2 20 syl φK1
22 21 nngt0d φ0<K1
23 2cn 2
24 6 recnd φK
25 mulcl 2K2K
26 23 24 25 sylancr φ2K
27 1cnd φ1
28 26 27 24 sub32d φ2K-1-K=2K-K-1
29 24 2timesd φ2K=K+K
30 24 24 29 mvrladdd φ2KK=K
31 30 oveq1d φ2K-K-1=K1
32 28 31 eqtrd φ2K-1-K=K1
33 22 32 breqtrrd φ0<2K-1-K
34 6 16 posdifd φK<2K10<2K-1-K
35 33 34 mpbird φK<2K1
36 eluz2nn K2K
37 2 36 syl φK
38 37 nnrpd φK+
39 15 nnrpd φ2K1+
40 rpexpmord NK+2K1+K<2K1KN<2K1N
41 3 38 39 40 syl3anc φK<2K1KN<2K1N
42 35 41 mpbid φKN<2K1N
43 3 nnzd φN
44 43 peano2zd φN+1
45 frmy Yrm:2×
46 45 fovcl K2N+1KYrmN+1
47 2 44 46 syl2anc φKYrmN+1
48 47 zred φKYrmN+1
49 jm2.17a K2N02K1NKYrmN+1
50 2 7 49 syl2anc φ2K1NKYrmN+1
51 17 48 19 50 4 letrd φ2K1NA
52 8 17 19 42 51 ltletrd φKN<A