Metamath Proof Explorer


Theorem jm3.1lem1

Description: Lemma for jm3.1 . (Contributed by Stefan O'Rear, 16-Oct-2014)

Ref Expression
Hypotheses jm3.1.a φ A 2
jm3.1.b φ K 2
jm3.1.c φ N
jm3.1.d φ K Y rm N + 1 A
Assertion jm3.1lem1 φ K N < A

Proof

Step Hyp Ref Expression
1 jm3.1.a φ A 2
2 jm3.1.b φ K 2
3 jm3.1.c φ N
4 jm3.1.d φ K Y rm N + 1 A
5 eluzelre K 2 K
6 2 5 syl φ K
7 3 nnnn0d φ N 0
8 6 7 reexpcld φ K N
9 2z 2
10 uzid 2 2 2
11 9 10 ax-mp 2 2
12 uz2mulcl 2 2 K 2 2 K 2
13 11 2 12 sylancr φ 2 K 2
14 uz2m1nn 2 K 2 2 K 1
15 13 14 syl φ 2 K 1
16 15 nnred φ 2 K 1
17 16 7 reexpcld φ 2 K 1 N
18 eluzelre A 2 A
19 1 18 syl φ A
20 uz2m1nn K 2 K 1
21 2 20 syl φ K 1
22 21 nngt0d φ 0 < K 1
23 2cn 2
24 6 recnd φ K
25 mulcl 2 K 2 K
26 23 24 25 sylancr φ 2 K
27 1cnd φ 1
28 26 27 24 sub32d φ 2 K - 1 - K = 2 K - K - 1
29 24 2timesd φ 2 K = K + K
30 24 24 29 mvrladdd φ 2 K K = K
31 30 oveq1d φ 2 K - K - 1 = K 1
32 28 31 eqtrd φ 2 K - 1 - K = K 1
33 22 32 breqtrrd φ 0 < 2 K - 1 - K
34 6 16 posdifd φ K < 2 K 1 0 < 2 K - 1 - K
35 33 34 mpbird φ K < 2 K 1
36 eluz2nn K 2 K
37 2 36 syl φ K
38 37 nnrpd φ K +
39 15 nnrpd φ 2 K 1 +
40 rpexpmord N K + 2 K 1 + K < 2 K 1 K N < 2 K 1 N
41 3 38 39 40 syl3anc φ K < 2 K 1 K N < 2 K 1 N
42 35 41 mpbid φ K N < 2 K 1 N
43 3 nnzd φ N
44 43 peano2zd φ N + 1
45 frmy Y rm : 2 ×
46 45 fovcl K 2 N + 1 K Y rm N + 1
47 2 44 46 syl2anc φ K Y rm N + 1
48 47 zred φ K Y rm N + 1
49 jm2.17a K 2 N 0 2 K 1 N K Y rm N + 1
50 2 7 49 syl2anc φ 2 K 1 N K Y rm N + 1
51 17 48 19 50 4 letrd φ 2 K 1 N A
52 8 17 19 42 51 ltletrd φ K N < A