Metamath Proof Explorer


Theorem jm2.17a

Description: First half of lemma 2.17 of JonesMatijasevic p. 696. (Contributed by Stefan O'Rear, 14-Oct-2014)

Ref Expression
Assertion jm2.17a A 2 N 0 2 A 1 N A Y rm N + 1

Proof

Step Hyp Ref Expression
1 oveq2 a = 0 2 A 1 a = 2 A 1 0
2 oveq1 a = 0 a + 1 = 0 + 1
3 2 oveq2d a = 0 A Y rm a + 1 = A Y rm 0 + 1
4 1 3 breq12d a = 0 2 A 1 a A Y rm a + 1 2 A 1 0 A Y rm 0 + 1
5 4 imbi2d a = 0 A 2 2 A 1 a A Y rm a + 1 A 2 2 A 1 0 A Y rm 0 + 1
6 oveq2 a = b 2 A 1 a = 2 A 1 b
7 oveq1 a = b a + 1 = b + 1
8 7 oveq2d a = b A Y rm a + 1 = A Y rm b + 1
9 6 8 breq12d a = b 2 A 1 a A Y rm a + 1 2 A 1 b A Y rm b + 1
10 9 imbi2d a = b A 2 2 A 1 a A Y rm a + 1 A 2 2 A 1 b A Y rm b + 1
11 oveq2 a = b + 1 2 A 1 a = 2 A 1 b + 1
12 oveq1 a = b + 1 a + 1 = b + 1 + 1
13 12 oveq2d a = b + 1 A Y rm a + 1 = A Y rm b + 1 + 1
14 11 13 breq12d a = b + 1 2 A 1 a A Y rm a + 1 2 A 1 b + 1 A Y rm b + 1 + 1
15 14 imbi2d a = b + 1 A 2 2 A 1 a A Y rm a + 1 A 2 2 A 1 b + 1 A Y rm b + 1 + 1
16 oveq2 a = N 2 A 1 a = 2 A 1 N
17 oveq1 a = N a + 1 = N + 1
18 17 oveq2d a = N A Y rm a + 1 = A Y rm N + 1
19 16 18 breq12d a = N 2 A 1 a A Y rm a + 1 2 A 1 N A Y rm N + 1
20 19 imbi2d a = N A 2 2 A 1 a A Y rm a + 1 A 2 2 A 1 N A Y rm N + 1
21 1le1 1 1
22 21 a1i A 2 1 1
23 2cn 2
24 eluzelcn A 2 A
25 mulcl 2 A 2 A
26 23 24 25 sylancr A 2 2 A
27 ax-1cn 1
28 subcl 2 A 1 2 A 1
29 26 27 28 sylancl A 2 2 A 1
30 29 exp0d A 2 2 A 1 0 = 1
31 0p1e1 0 + 1 = 1
32 31 oveq2i A Y rm 0 + 1 = A Y rm 1
33 rmy1 A 2 A Y rm 1 = 1
34 32 33 syl5eq A 2 A Y rm 0 + 1 = 1
35 22 30 34 3brtr4d A 2 2 A 1 0 A Y rm 0 + 1
36 2re 2
37 eluzelre A 2 A
38 37 adantl b 0 A 2 A
39 remulcl 2 A 2 A
40 36 38 39 sylancr b 0 A 2 2 A
41 1re 1
42 resubcl 2 A 1 2 A 1
43 40 41 42 sylancl b 0 A 2 2 A 1
44 peano2nn0 b 0 b + 1 0
45 44 adantr b 0 A 2 b + 1 0
46 43 45 reexpcld b 0 A 2 2 A 1 b + 1
47 46 3adant3 b 0 A 2 2 A 1 b A Y rm b + 1 2 A 1 b + 1
48 simpr b 0 A 2 A 2
49 nn0z b 0 b
50 49 adantr b 0 A 2 b
51 50 peano2zd b 0 A 2 b + 1
52 frmy Y rm : 2 ×
53 52 fovcl A 2 b + 1 A Y rm b + 1
54 53 zred A 2 b + 1 A Y rm b + 1
55 48 51 54 syl2anc b 0 A 2 A Y rm b + 1
56 55 43 remulcld b 0 A 2 A Y rm b + 1 2 A 1
57 56 3adant3 b 0 A 2 2 A 1 b A Y rm b + 1 A Y rm b + 1 2 A 1
58 51 peano2zd b 0 A 2 b + 1 + 1
59 52 fovcl A 2 b + 1 + 1 A Y rm b + 1 + 1
60 59 zred A 2 b + 1 + 1 A Y rm b + 1 + 1
61 48 58 60 syl2anc b 0 A 2 A Y rm b + 1 + 1
62 61 3adant3 b 0 A 2 2 A 1 b A Y rm b + 1 A Y rm b + 1 + 1
63 29 3ad2ant2 b 0 A 2 2 A 1 b A Y rm b + 1 2 A 1
64 simp1 b 0 A 2 2 A 1 b A Y rm b + 1 b 0
65 63 64 expp1d b 0 A 2 2 A 1 b A Y rm b + 1 2 A 1 b + 1 = 2 A 1 b 2 A 1
66 simpl b 0 A 2 b 0
67 43 66 reexpcld b 0 A 2 2 A 1 b
68 2nn 2
69 eluz2nn A 2 A
70 69 adantl b 0 A 2 A
71 nnmulcl 2 A 2 A
72 68 70 71 sylancr b 0 A 2 2 A
73 nnm1nn0 2 A 2 A 1 0
74 nn0ge0 2 A 1 0 0 2 A 1
75 72 73 74 3syl b 0 A 2 0 2 A 1
76 43 75 jca b 0 A 2 2 A 1 0 2 A 1
77 67 55 76 3jca b 0 A 2 2 A 1 b A Y rm b + 1 2 A 1 0 2 A 1
78 lemul1a 2 A 1 b A Y rm b + 1 2 A 1 0 2 A 1 2 A 1 b A Y rm b + 1 2 A 1 b 2 A 1 A Y rm b + 1 2 A 1
79 77 78 stoic3 b 0 A 2 2 A 1 b A Y rm b + 1 2 A 1 b 2 A 1 A Y rm b + 1 2 A 1
80 65 79 eqbrtrd b 0 A 2 2 A 1 b A Y rm b + 1 2 A 1 b + 1 A Y rm b + 1 2 A 1
81 nn0cn b 0 b
82 81 adantr b 0 A 2 b
83 pncan b 1 b + 1 - 1 = b
84 82 27 83 sylancl b 0 A 2 b + 1 - 1 = b
85 84 oveq2d b 0 A 2 A Y rm b + 1 - 1 = A Y rm b
86 52 fovcl A 2 b A Y rm b
87 86 zred A 2 b A Y rm b
88 48 50 87 syl2anc b 0 A 2 A Y rm b
89 85 88 eqeltrd b 0 A 2 A Y rm b + 1 - 1
90 remulcl A Y rm b + 1 1 A Y rm b + 1 1
91 55 41 90 sylancl b 0 A 2 A Y rm b + 1 1
92 40 55 remulcld b 0 A 2 2 A A Y rm b + 1
93 nn0re b 0 b
94 93 adantr b 0 A 2 b
95 94 lep1d b 0 A 2 b b + 1
96 lermy A 2 b b + 1 b b + 1 A Y rm b A Y rm b + 1
97 48 50 51 96 syl3anc b 0 A 2 b b + 1 A Y rm b A Y rm b + 1
98 95 97 mpbid b 0 A 2 A Y rm b A Y rm b + 1
99 55 recnd b 0 A 2 A Y rm b + 1
100 99 mulid1d b 0 A 2 A Y rm b + 1 1 = A Y rm b + 1
101 98 85 100 3brtr4d b 0 A 2 A Y rm b + 1 - 1 A Y rm b + 1 1
102 89 91 92 101 lesub2dd b 0 A 2 2 A A Y rm b + 1 A Y rm b + 1 1 2 A A Y rm b + 1 A Y rm b + 1 - 1
103 40 recnd b 0 A 2 2 A
104 27 a1i b 0 A 2 1
105 99 103 104 subdid b 0 A 2 A Y rm b + 1 2 A 1 = A Y rm b + 1 2 A A Y rm b + 1 1
106 99 103 mulcomd b 0 A 2 A Y rm b + 1 2 A = 2 A A Y rm b + 1
107 106 oveq1d b 0 A 2 A Y rm b + 1 2 A A Y rm b + 1 1 = 2 A A Y rm b + 1 A Y rm b + 1 1
108 105 107 eqtrd b 0 A 2 A Y rm b + 1 2 A 1 = 2 A A Y rm b + 1 A Y rm b + 1 1
109 rmyluc2 A 2 b + 1 A Y rm b + 1 + 1 = 2 A A Y rm b + 1 A Y rm b + 1 - 1
110 48 51 109 syl2anc b 0 A 2 A Y rm b + 1 + 1 = 2 A A Y rm b + 1 A Y rm b + 1 - 1
111 102 108 110 3brtr4d b 0 A 2 A Y rm b + 1 2 A 1 A Y rm b + 1 + 1
112 111 3adant3 b 0 A 2 2 A 1 b A Y rm b + 1 A Y rm b + 1 2 A 1 A Y rm b + 1 + 1
113 47 57 62 80 112 letrd b 0 A 2 2 A 1 b A Y rm b + 1 2 A 1 b + 1 A Y rm b + 1 + 1
114 113 3exp b 0 A 2 2 A 1 b A Y rm b + 1 2 A 1 b + 1 A Y rm b + 1 + 1
115 114 a2d b 0 A 2 2 A 1 b A Y rm b + 1 A 2 2 A 1 b + 1 A Y rm b + 1 + 1
116 5 10 15 20 35 115 nn0ind N 0 A 2 2 A 1 N A Y rm N + 1
117 116 impcom A 2 N 0 2 A 1 N A Y rm N + 1