Metamath Proof Explorer


Theorem knoppndvlem9

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 15-Jun-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppndvlem9.t T=xx+12x
knoppndvlem9.f F=yn0CnT2 Nny
knoppndvlem9.a A=2 NJ2 M
knoppndvlem9.c φC11
knoppndvlem9.j φJ0
knoppndvlem9.m φM
knoppndvlem9.n φN
knoppndvlem9.1 φ¬2M
Assertion knoppndvlem9 φFAJ=CJ2

Proof

Step Hyp Ref Expression
1 knoppndvlem9.t T=xx+12x
2 knoppndvlem9.f F=yn0CnT2 Nny
3 knoppndvlem9.a A=2 NJ2 M
4 knoppndvlem9.c φC11
5 knoppndvlem9.j φJ0
6 knoppndvlem9.m φM
7 knoppndvlem9.n φN
8 knoppndvlem9.1 φ¬2M
9 1 2 3 5 6 7 knoppndvlem7 φFAJ=CJTM2
10 odd2np1 M¬2Mm2m+1=M
11 6 10 syl φ¬2Mm2m+1=M
12 8 11 mpbid φm2m+1=M
13 eqcom 2m+1=MM=2m+1
14 13 biimpi 2m+1=MM=2m+1
15 14 oveq1d 2m+1=MM2=2m+12
16 15 adantl m2m+1=MM2=2m+12
17 16 adantl φm2m+1=MM2=2m+12
18 2cnd φm2
19 zcn mm
20 19 adantl φmm
21 18 20 mulcld φm2m
22 1cnd φm1
23 2ne0 20
24 23 a1i φm20
25 21 22 18 24 divdird φm2m+12=2m2+12
26 20 18 24 divcan3d φm2m2=m
27 26 oveq1d φm2m2+12=m+12
28 25 27 eqtrd φm2m+12=m+12
29 28 adantrr φm2m+1=M2m+12=m+12
30 17 29 eqtrd φm2m+1=MM2=m+12
31 30 fveq2d φm2m+1=MTM2=Tm+12
32 id mm
33 1 32 dnizphlfeqhlf mTm+12=12
34 33 adantl φmTm+12=12
35 34 adantrr φm2m+1=MTm+12=12
36 31 35 eqtrd φm2m+1=MTM2=12
37 12 36 rexlimddv φTM2=12
38 37 oveq2d φCJTM2=CJ12
39 4 knoppndvlem3 φCC<1
40 39 simpld φC
41 40 recnd φC
42 41 5 expcld φCJ
43 1cnd φ1
44 2cnd φ2
45 23 a1i φ20
46 42 43 44 45 div12d φCJ12=1CJ2
47 42 44 45 divcld φCJ2
48 47 mullidd φ1CJ2=CJ2
49 46 48 eqtrd φCJ12=CJ2
50 9 38 49 3eqtrd φFAJ=CJ2