Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 15-Jun-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | knoppndvlem9.t | |
|
knoppndvlem9.f | |
||
knoppndvlem9.a | |
||
knoppndvlem9.c | |
||
knoppndvlem9.j | |
||
knoppndvlem9.m | |
||
knoppndvlem9.n | |
||
knoppndvlem9.1 | |
||
Assertion | knoppndvlem9 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | knoppndvlem9.t | |
|
2 | knoppndvlem9.f | |
|
3 | knoppndvlem9.a | |
|
4 | knoppndvlem9.c | |
|
5 | knoppndvlem9.j | |
|
6 | knoppndvlem9.m | |
|
7 | knoppndvlem9.n | |
|
8 | knoppndvlem9.1 | |
|
9 | 1 2 3 5 6 7 | knoppndvlem7 | |
10 | odd2np1 | |
|
11 | 6 10 | syl | |
12 | 8 11 | mpbid | |
13 | eqcom | |
|
14 | 13 | biimpi | |
15 | 14 | oveq1d | |
16 | 15 | adantl | |
17 | 16 | adantl | |
18 | 2cnd | |
|
19 | zcn | |
|
20 | 19 | adantl | |
21 | 18 20 | mulcld | |
22 | 1cnd | |
|
23 | 2ne0 | |
|
24 | 23 | a1i | |
25 | 21 22 18 24 | divdird | |
26 | 20 18 24 | divcan3d | |
27 | 26 | oveq1d | |
28 | 25 27 | eqtrd | |
29 | 28 | adantrr | |
30 | 17 29 | eqtrd | |
31 | 30 | fveq2d | |
32 | id | |
|
33 | 1 32 | dnizphlfeqhlf | |
34 | 33 | adantl | |
35 | 34 | adantrr | |
36 | 31 35 | eqtrd | |
37 | 12 36 | rexlimddv | |
38 | 37 | oveq2d | |
39 | 4 | knoppndvlem3 | |
40 | 39 | simpld | |
41 | 40 | recnd | |
42 | 41 5 | expcld | |
43 | 1cnd | |
|
44 | 2cnd | |
|
45 | 23 | a1i | |
46 | 42 43 44 45 | div12d | |
47 | 42 44 45 | divcld | |
48 | 47 | mullidd | |
49 | 46 48 | eqtrd | |
50 | 9 38 49 | 3eqtrd | |