Description: Lemma for lcmn0cl and dvdslcm . (Contributed by Steve Rodriguez, 20-Jan-2020) (Proof shortened by AV, 16-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | lcmcllem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmn0val | |
|
2 | ssrab2 | |
|
3 | nnuz | |
|
4 | 2 3 | sseqtri | |
5 | zmulcl | |
|
6 | 5 | adantr | |
7 | zcn | |
|
8 | zcn | |
|
9 | 7 8 | anim12i | |
10 | ioran | |
|
11 | df-ne | |
|
12 | df-ne | |
|
13 | 11 12 | anbi12i | |
14 | 10 13 | sylbb2 | |
15 | mulne0 | |
|
16 | 15 | an4s | |
17 | 9 14 16 | syl2an | |
18 | nnabscl | |
|
19 | 6 17 18 | syl2anc | |
20 | dvdsmul1 | |
|
21 | dvdsabsb | |
|
22 | 5 21 | syldan | |
23 | 20 22 | mpbid | |
24 | dvdsmul2 | |
|
25 | dvdsabsb | |
|
26 | 5 25 | sylan2 | |
27 | 26 | anabss7 | |
28 | 24 27 | mpbid | |
29 | 23 28 | jca | |
30 | 29 | adantr | |
31 | breq2 | |
|
32 | breq2 | |
|
33 | 31 32 | anbi12d | |
34 | 33 | rspcev | |
35 | 19 30 34 | syl2anc | |
36 | rabn0 | |
|
37 | 35 36 | sylibr | |
38 | infssuzcl | |
|
39 | 4 37 38 | sylancr | |
40 | 1 39 | eqeltrd | |