Metamath Proof Explorer


Theorem lcmcllem

Description: Lemma for lcmn0cl and dvdslcm . (Contributed by Steve Rodriguez, 20-Jan-2020) (Proof shortened by AV, 16-Sep-2020)

Ref Expression
Assertion lcmcllem MN¬M=0N=0MlcmNn|MnNn

Proof

Step Hyp Ref Expression
1 lcmn0val MN¬M=0N=0MlcmN=supn|MnNn<
2 ssrab2 n|MnNn
3 nnuz =1
4 2 3 sseqtri n|MnNn1
5 zmulcl MN M N
6 5 adantr MN¬M=0N=0 M N
7 zcn MM
8 zcn NN
9 7 8 anim12i MNMN
10 ioran ¬M=0N=0¬M=0¬N=0
11 df-ne M0¬M=0
12 df-ne N0¬N=0
13 11 12 anbi12i M0N0¬M=0¬N=0
14 10 13 sylbb2 ¬M=0N=0M0N0
15 mulne0 MM0NN0 M N0
16 15 an4s MNM0N0 M N0
17 9 14 16 syl2an MN¬M=0N=0 M N0
18 nnabscl M N M N0 M N
19 6 17 18 syl2anc MN¬M=0N=0 M N
20 dvdsmul1 MNM M N
21 dvdsabsb M M NM M NM M N
22 5 21 syldan MNM M NM M N
23 20 22 mpbid MNM M N
24 dvdsmul2 MNN M N
25 dvdsabsb N M NN M NN M N
26 5 25 sylan2 NMNN M NN M N
27 26 anabss7 MNN M NN M N
28 24 27 mpbid MNN M N
29 23 28 jca MNM M NN M N
30 29 adantr MN¬M=0N=0M M NN M N
31 breq2 n= M NMnM M N
32 breq2 n= M NNnN M N
33 31 32 anbi12d n= M NMnNnM M NN M N
34 33 rspcev M NM M NN M NnMnNn
35 19 30 34 syl2anc MN¬M=0N=0nMnNn
36 rabn0 n|MnNnnMnNn
37 35 36 sylibr MN¬M=0N=0n|MnNn
38 infssuzcl n|MnNn1n|MnNnsupn|MnNn<n|MnNn
39 4 37 38 sylancr MN¬M=0N=0supn|MnNn<n|MnNn
40 1 39 eqeltrd MN¬M=0N=0MlcmNn|MnNn