Metamath Proof Explorer


Theorem lcmineqlem18

Description: Technical lemma to shift factors in binomial coefficient. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypothesis lcmineqlem18.1 φN
Assertion lcmineqlem18 φN+1(2 N+1N+1)=2 N+1(2 NN)

Proof

Step Hyp Ref Expression
1 lcmineqlem18.1 φN
2 0zd φ0
3 2z 2
4 3 a1i φ2
5 1 nnzd φN
6 4 5 zmulcld φ2 N
7 6 peano2zd φ2 N+1
8 5 peano2zd φN+1
9 1 nnred φN
10 1red φ1
11 1 nnnn0d φN0
12 11 nn0ge0d φ0N
13 0le1 01
14 13 a1i φ01
15 9 10 12 14 addge0d φ0N+1
16 9 10 readdcld φN+1
17 16 9 addge01d φ0NN+1N+1+N
18 12 17 mpbid φN+1N+1+N
19 9 recnd φN
20 1cnd φ1
21 19 20 19 add32d φN+1+N=N+N+1
22 19 2timesd φ2 N=N+N
23 22 oveq1d φ2 N+1=N+N+1
24 23 eqcomd φN+N+1=2 N+1
25 21 24 eqtrd φN+1+N=2 N+1
26 18 25 breqtrd φN+12 N+1
27 2 7 8 15 26 elfzd φN+102 N+1
28 bcval2 N+102 N+1(2 N+1N+1)=2 N+1!2 N+1-N+1!N+1!
29 27 28 syl φ(2 N+1N+1)=2 N+1!2 N+1-N+1!N+1!
30 6 zcnd φ2 N
31 30 20 19 20 addsub4d φ2 N+1-N+1=2 NN+1-1
32 22 oveq1d φ2 NN=N+N-N
33 19 19 pncand φN+N-N=N
34 32 33 eqtrd φ2 NN=N
35 1m1e0 11=0
36 35 a1i φ11=0
37 34 36 oveq12d φ2 NN+1-1=N+0
38 19 addridd φN+0=N
39 37 38 eqtrd φ2 NN+1-1=N
40 31 39 eqtrd φ2 N+1-N+1=N
41 40 fveq2d φ2 N+1-N+1!=N!
42 41 oveq1d φ2 N+1-N+1!N+1!=N!N+1!
43 42 oveq2d φ2 N+1!2 N+1-N+1!N+1!=2 N+1!N!N+1!
44 29 43 eqtrd φ(2 N+1N+1)=2 N+1!N!N+1!
45 faccl N0N!
46 11 45 syl φN!
47 46 nncnd φN!
48 1nn0 10
49 48 a1i φ10
50 11 49 nn0addcld φN+10
51 faccl N+10N+1!
52 50 51 syl φN+1!
53 52 nncnd φN+1!
54 47 53 mulcomd φN!N+1!=N+1!N!
55 facp1 N0N+1!=N!N+1
56 11 55 syl φN+1!=N!N+1
57 19 20 addcld φN+1
58 47 57 mulcomd φN!N+1=N+1N!
59 56 58 eqtrd φN+1!=N+1N!
60 59 oveq1d φN+1!N!=N+1N!N!
61 57 47 47 mulassd φN+1N!N!=N+1N!N!
62 60 61 eqtrd φN+1!N!=N+1N!N!
63 54 62 eqtrd φN!N+1!=N+1N!N!
64 63 oveq2d φ2 N+1!N!N+1!=2 N+1!N+1N!N!
65 44 64 eqtrd φ(2 N+1N+1)=2 N+1!N+1N!N!
66 2nn0 20
67 66 a1i φ20
68 67 11 nn0mulcld φ2 N0
69 facp1 2 N02 N+1!=2 N!2 N+1
70 68 69 syl φ2 N+1!=2 N!2 N+1
71 faccl 2 N02 N!
72 68 71 syl φ2 N!
73 72 nncnd φ2 N!
74 30 20 addcld φ2 N+1
75 73 74 mulcomd φ2 N!2 N+1=2 N+12 N!
76 70 75 eqtrd φ2 N+1!=2 N+12 N!
77 76 oveq1d φ2 N+1!N+1N!N!=2 N+12 N!N+1N!N!
78 65 77 eqtrd φ(2 N+1N+1)=2 N+12 N!N+1N!N!
79 78 oveq2d φN+1(2 N+1N+1)=N+12 N+12 N!N+1N!N!
80 74 73 mulcld φ2 N+12 N!
81 47 47 mulcld φN!N!
82 57 81 mulcld φN+1N!N!
83 1 peano2nnd φN+1
84 83 nnne0d φN+10
85 46 nnne0d φN!0
86 47 47 85 85 mulne0d φN!N!0
87 57 81 84 86 mulne0d φN+1N!N!0
88 57 80 82 87 divassd φN+12 N+12 N!N+1N!N!=N+12 N+12 N!N+1N!N!
89 88 eqcomd φN+12 N+12 N!N+1N!N!=N+12 N+12 N!N+1N!N!
90 79 89 eqtrd φN+1(2 N+1N+1)=N+12 N+12 N!N+1N!N!
91 57 57 80 81 84 86 divmuldivd φN+1N+12 N+12 N!N!N!=N+12 N+12 N!N+1N!N!
92 91 eqcomd φN+12 N+12 N!N+1N!N!=N+1N+12 N+12 N!N!N!
93 90 92 eqtrd φN+1(2 N+1N+1)=N+1N+12 N+12 N!N!N!
94 57 84 dividd φN+1N+1=1
95 94 oveq1d φN+1N+12 N+12 N!N!N!=12 N+12 N!N!N!
96 80 81 86 divcld φ2 N+12 N!N!N!
97 96 mullidd φ12 N+12 N!N!N!=2 N+12 N!N!N!
98 95 97 eqtrd φN+1N+12 N+12 N!N!N!=2 N+12 N!N!N!
99 93 98 eqtrd φN+1(2 N+1N+1)=2 N+12 N!N!N!
100 74 73 81 86 divassd φ2 N+12 N!N!N!=2 N+12 N!N!N!
101 99 100 eqtrd φN+1(2 N+1N+1)=2 N+12 N!N!N!
102 9 9 addge01d φ0NNN+N
103 22 breq2d φN2 NNN+N
104 102 103 bitr4d φ0NN2 N
105 12 104 mpbid φN2 N
106 2 6 5 12 105 elfzd φN02 N
107 bcval2 N02 N(2 NN)=2 N!2 NN!N!
108 106 107 syl φ(2 NN)=2 N!2 NN!N!
109 34 fveq2d φ2 NN!=N!
110 109 oveq1d φ2 NN!N!=N!N!
111 110 oveq2d φ2 N!2 NN!N!=2 N!N!N!
112 108 111 eqtrd φ(2 NN)=2 N!N!N!
113 112 oveq2d φ2 N+1(2 NN)=2 N+12 N!N!N!
114 113 eqcomd φ2 N+12 N!N!N!=2 N+1(2 NN)
115 101 114 eqtrd φN+1(2 N+1N+1)=2 N+1(2 NN)