Metamath Proof Explorer


Theorem lcmineqlem18

Description: Technical lemma to shift factors in binomial coefficient. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypothesis lcmineqlem18.1 φ N
Assertion lcmineqlem18 φ N + 1 ( 2 N + 1 N + 1 ) = 2 N + 1 ( 2 N N)

Proof

Step Hyp Ref Expression
1 lcmineqlem18.1 φ N
2 0zd φ 0
3 2z 2
4 3 a1i φ 2
5 1 nnzd φ N
6 4 5 zmulcld φ 2 N
7 6 peano2zd φ 2 N + 1
8 5 peano2zd φ N + 1
9 2 7 8 3jca φ 0 2 N + 1 N + 1
10 1 nnred φ N
11 1red φ 1
12 1 nnnn0d φ N 0
13 12 nn0ge0d φ 0 N
14 0le1 0 1
15 14 a1i φ 0 1
16 10 11 13 15 addge0d φ 0 N + 1
17 10 11 readdcld φ N + 1
18 17 10 addge01d φ 0 N N + 1 N + 1 + N
19 13 18 mpbid φ N + 1 N + 1 + N
20 10 recnd φ N
21 1cnd φ 1
22 20 21 20 add32d φ N + 1 + N = N + N + 1
23 20 2timesd φ 2 N = N + N
24 23 oveq1d φ 2 N + 1 = N + N + 1
25 24 eqcomd φ N + N + 1 = 2 N + 1
26 22 25 eqtrd φ N + 1 + N = 2 N + 1
27 19 26 breqtrd φ N + 1 2 N + 1
28 16 27 jca φ 0 N + 1 N + 1 2 N + 1
29 9 28 jca φ 0 2 N + 1 N + 1 0 N + 1 N + 1 2 N + 1
30 elfz2 N + 1 0 2 N + 1 0 2 N + 1 N + 1 0 N + 1 N + 1 2 N + 1
31 29 30 sylibr φ N + 1 0 2 N + 1
32 bcval2 N + 1 0 2 N + 1 ( 2 N + 1 N + 1 ) = 2 N + 1 ! 2 N + 1 - N + 1 ! N + 1 !
33 31 32 syl φ ( 2 N + 1 N + 1 ) = 2 N + 1 ! 2 N + 1 - N + 1 ! N + 1 !
34 6 zcnd φ 2 N
35 34 21 20 21 addsub4d φ 2 N + 1 - N + 1 = 2 N N + 1 - 1
36 23 oveq1d φ 2 N N = N + N - N
37 20 20 pncand φ N + N - N = N
38 36 37 eqtrd φ 2 N N = N
39 1m1e0 1 1 = 0
40 39 a1i φ 1 1 = 0
41 38 40 oveq12d φ 2 N N + 1 - 1 = N + 0
42 20 addid1d φ N + 0 = N
43 41 42 eqtrd φ 2 N N + 1 - 1 = N
44 35 43 eqtrd φ 2 N + 1 - N + 1 = N
45 44 fveq2d φ 2 N + 1 - N + 1 ! = N !
46 45 oveq1d φ 2 N + 1 - N + 1 ! N + 1 ! = N ! N + 1 !
47 46 oveq2d φ 2 N + 1 ! 2 N + 1 - N + 1 ! N + 1 ! = 2 N + 1 ! N ! N + 1 !
48 33 47 eqtrd φ ( 2 N + 1 N + 1 ) = 2 N + 1 ! N ! N + 1 !
49 faccl N 0 N !
50 12 49 syl φ N !
51 50 nncnd φ N !
52 1nn0 1 0
53 52 a1i φ 1 0
54 12 53 nn0addcld φ N + 1 0
55 faccl N + 1 0 N + 1 !
56 54 55 syl φ N + 1 !
57 56 nncnd φ N + 1 !
58 51 57 mulcomd φ N ! N + 1 ! = N + 1 ! N !
59 facp1 N 0 N + 1 ! = N ! N + 1
60 12 59 syl φ N + 1 ! = N ! N + 1
61 20 21 addcld φ N + 1
62 51 61 mulcomd φ N ! N + 1 = N + 1 N !
63 60 62 eqtrd φ N + 1 ! = N + 1 N !
64 63 oveq1d φ N + 1 ! N ! = N + 1 N ! N !
65 61 51 51 mulassd φ N + 1 N ! N ! = N + 1 N ! N !
66 64 65 eqtrd φ N + 1 ! N ! = N + 1 N ! N !
67 58 66 eqtrd φ N ! N + 1 ! = N + 1 N ! N !
68 67 oveq2d φ 2 N + 1 ! N ! N + 1 ! = 2 N + 1 ! N + 1 N ! N !
69 48 68 eqtrd φ ( 2 N + 1 N + 1 ) = 2 N + 1 ! N + 1 N ! N !
70 2nn0 2 0
71 70 a1i φ 2 0
72 71 12 nn0mulcld φ 2 N 0
73 facp1 2 N 0 2 N + 1 ! = 2 N ! 2 N + 1
74 72 73 syl φ 2 N + 1 ! = 2 N ! 2 N + 1
75 faccl 2 N 0 2 N !
76 72 75 syl φ 2 N !
77 76 nncnd φ 2 N !
78 34 21 addcld φ 2 N + 1
79 77 78 mulcomd φ 2 N ! 2 N + 1 = 2 N + 1 2 N !
80 74 79 eqtrd φ 2 N + 1 ! = 2 N + 1 2 N !
81 80 oveq1d φ 2 N + 1 ! N + 1 N ! N ! = 2 N + 1 2 N ! N + 1 N ! N !
82 69 81 eqtrd φ ( 2 N + 1 N + 1 ) = 2 N + 1 2 N ! N + 1 N ! N !
83 82 oveq2d φ N + 1 ( 2 N + 1 N + 1 ) = N + 1 2 N + 1 2 N ! N + 1 N ! N !
84 78 77 mulcld φ 2 N + 1 2 N !
85 51 51 mulcld φ N ! N !
86 61 85 mulcld φ N + 1 N ! N !
87 1 peano2nnd φ N + 1
88 87 nnne0d φ N + 1 0
89 50 nnne0d φ N ! 0
90 51 51 89 89 mulne0d φ N ! N ! 0
91 61 85 88 90 mulne0d φ N + 1 N ! N ! 0
92 61 84 86 91 divassd φ N + 1 2 N + 1 2 N ! N + 1 N ! N ! = N + 1 2 N + 1 2 N ! N + 1 N ! N !
93 92 eqcomd φ N + 1 2 N + 1 2 N ! N + 1 N ! N ! = N + 1 2 N + 1 2 N ! N + 1 N ! N !
94 83 93 eqtrd φ N + 1 ( 2 N + 1 N + 1 ) = N + 1 2 N + 1 2 N ! N + 1 N ! N !
95 61 61 84 85 88 90 divmuldivd φ N + 1 N + 1 2 N + 1 2 N ! N ! N ! = N + 1 2 N + 1 2 N ! N + 1 N ! N !
96 95 eqcomd φ N + 1 2 N + 1 2 N ! N + 1 N ! N ! = N + 1 N + 1 2 N + 1 2 N ! N ! N !
97 94 96 eqtrd φ N + 1 ( 2 N + 1 N + 1 ) = N + 1 N + 1 2 N + 1 2 N ! N ! N !
98 61 88 dividd φ N + 1 N + 1 = 1
99 98 oveq1d φ N + 1 N + 1 2 N + 1 2 N ! N ! N ! = 1 2 N + 1 2 N ! N ! N !
100 84 85 90 divcld φ 2 N + 1 2 N ! N ! N !
101 100 mulid2d φ 1 2 N + 1 2 N ! N ! N ! = 2 N + 1 2 N ! N ! N !
102 99 101 eqtrd φ N + 1 N + 1 2 N + 1 2 N ! N ! N ! = 2 N + 1 2 N ! N ! N !
103 97 102 eqtrd φ N + 1 ( 2 N + 1 N + 1 ) = 2 N + 1 2 N ! N ! N !
104 78 77 85 90 divassd φ 2 N + 1 2 N ! N ! N ! = 2 N + 1 2 N ! N ! N !
105 103 104 eqtrd φ N + 1 ( 2 N + 1 N + 1 ) = 2 N + 1 2 N ! N ! N !
106 2 6 5 3jca φ 0 2 N N
107 10 10 addge01d φ 0 N N N + N
108 23 breq2d φ N 2 N N N + N
109 107 108 bitr4d φ 0 N N 2 N
110 13 109 mpbid φ N 2 N
111 13 110 jca φ 0 N N 2 N
112 106 111 jca φ 0 2 N N 0 N N 2 N
113 elfz2 N 0 2 N 0 2 N N 0 N N 2 N
114 112 113 sylibr φ N 0 2 N
115 bcval2 N 0 2 N ( 2 N N) = 2 N ! 2 N N ! N !
116 114 115 syl φ ( 2 N N) = 2 N ! 2 N N ! N !
117 38 fveq2d φ 2 N N ! = N !
118 117 oveq1d φ 2 N N ! N ! = N ! N !
119 118 oveq2d φ 2 N ! 2 N N ! N ! = 2 N ! N ! N !
120 116 119 eqtrd φ ( 2 N N) = 2 N ! N ! N !
121 120 oveq2d φ 2 N + 1 ( 2 N N) = 2 N + 1 2 N ! N ! N !
122 121 eqcomd φ 2 N + 1 2 N ! N ! N ! = 2 N + 1 ( 2 N N)
123 105 122 eqtrd φ N + 1 ( 2 N + 1 N + 1 ) = 2 N + 1 ( 2 N N)