Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 29-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcmineqlem2.1 | |
|
lcmineqlem2.2 | |
||
lcmineqlem2.3 | |
||
lcmineqlem2.4 | |
||
Assertion | lcmineqlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmineqlem2.1 | |
|
2 | lcmineqlem2.2 | |
|
3 | lcmineqlem2.3 | |
|
4 | lcmineqlem2.4 | |
|
5 | 1 2 3 4 | lcmineqlem1 | |
6 | eqid | |
|
7 | fzfid | |
|
8 | 0red | |
|
9 | 1red | |
|
10 | unitsscn | |
|
11 | resmpt | |
|
12 | 10 11 | ax-mp | |
13 | nnm1nn0 | |
|
14 | expcncf | |
|
15 | 3 13 14 | 3syl | |
16 | rescncf | |
|
17 | 10 16 | ax-mp | |
18 | 15 17 | syl | |
19 | 12 18 | eqeltrrid | |
20 | elfznn0 | |
|
21 | neg1cn | |
|
22 | expcl | |
|
23 | 21 22 | mpan | |
24 | 20 23 | syl | |
25 | 24 | adantl | |
26 | 3 | nnnn0d | |
27 | 2 | nnnn0d | |
28 | nn0sub | |
|
29 | 26 27 28 | syl2anc | |
30 | 4 29 | mpbid | |
31 | nn0z | |
|
32 | 20 31 | syl | |
33 | bccl | |
|
34 | 32 33 | sylan2 | |
35 | 30 34 | sylan | |
36 | 35 | nn0cnd | |
37 | 25 36 | mulcld | |
38 | resmpt | |
|
39 | 10 38 | ax-mp | |
40 | expcncf | |
|
41 | 20 40 | syl | |
42 | rescncf | |
|
43 | 10 42 | ax-mp | |
44 | 41 43 | syl | |
45 | 39 44 | eqeltrrid | |
46 | 45 | adantl | |
47 | 6 7 8 9 19 37 46 | 3factsumint | |
48 | 5 47 | eqtrd | |