Description: Derivative of (1-x)^(N-M). (Contributed by metakunt, 12-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcmineqlem8.1 | |
|
lcmineqlem8.2 | |
||
lcmineqlem8.3 | |
||
Assertion | lcmineqlem8 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmineqlem8.1 | |
|
2 | lcmineqlem8.2 | |
|
3 | lcmineqlem8.3 | |
|
4 | cnelprrecn | |
|
5 | 4 | a1i | |
6 | 1cnd | |
|
7 | simpr | |
|
8 | 6 7 | subcld | |
9 | neg1cn | |
|
10 | 9 | a1i | |
11 | simpr | |
|
12 | 1 | nnzd | |
13 | 2 | nnzd | |
14 | znnsub | |
|
15 | 12 13 14 | syl2anc | |
16 | 3 15 | mpbid | |
17 | 16 | nnnn0d | |
18 | 17 | adantr | |
19 | 11 18 | expcld | |
20 | 2 | nncnd | |
21 | 20 | adantr | |
22 | 1 | nncnd | |
23 | 22 | adantr | |
24 | 21 23 | subcld | |
25 | nnm1nn0 | |
|
26 | 16 25 | syl | |
27 | 26 | adantr | |
28 | expcl | |
|
29 | 11 27 28 | syl2anc | |
30 | 24 29 | mulcld | |
31 | lcmineqlem7 | |
|
32 | 31 | a1i | |
33 | dvexp | |
|
34 | 16 33 | syl | |
35 | oveq1 | |
|
36 | oveq1 | |
|
37 | 36 | oveq2d | |
38 | 5 5 8 10 19 30 32 34 35 37 | dvmptco | |
39 | 20 | adantr | |
40 | 22 | adantr | |
41 | 39 40 | subcld | |
42 | ax-1cn | |
|
43 | subcl | |
|
44 | 42 43 | mpan | |
45 | expcl | |
|
46 | 44 26 45 | syl2anr | |
47 | 41 46 10 | mul32d | |
48 | 20 22 | subcld | |
49 | 9 | a1i | |
50 | 48 49 | mulcomd | |
51 | 50 | oveq1d | |
52 | 51 | adantr | |
53 | 47 52 | eqtrd | |
54 | 48 | mulm1d | |
55 | 54 | adantr | |
56 | 55 | oveq1d | |
57 | 53 56 | eqtrd | |
58 | 57 | mpteq2dva | |
59 | 38 58 | eqtrd | |