Metamath Proof Explorer


Theorem lcmineqlem8

Description: Derivative of (1-x)^(N-M). (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses lcmineqlem8.1 φM
lcmineqlem8.2 φN
lcmineqlem8.3 φM<N
Assertion lcmineqlem8 φdx1xNMdx=xNM1xN-M-1

Proof

Step Hyp Ref Expression
1 lcmineqlem8.1 φM
2 lcmineqlem8.2 φN
3 lcmineqlem8.3 φM<N
4 cnelprrecn
5 4 a1i φ
6 1cnd φx1
7 simpr φxx
8 6 7 subcld φx1x
9 neg1cn 1
10 9 a1i φx1
11 simpr φyy
12 1 nnzd φM
13 2 nnzd φN
14 znnsub MNM<NNM
15 12 13 14 syl2anc φM<NNM
16 3 15 mpbid φNM
17 16 nnnn0d φNM0
18 17 adantr φyNM0
19 11 18 expcld φyyNM
20 2 nncnd φN
21 20 adantr φyN
22 1 nncnd φM
23 22 adantr φyM
24 21 23 subcld φyNM
25 nnm1nn0 NMN-M-10
26 16 25 syl φN-M-10
27 26 adantr φyN-M-10
28 expcl yN-M-10yN-M-1
29 11 27 28 syl2anc φyyN-M-1
30 24 29 mulcld φyNMyN-M-1
31 lcmineqlem7 dx1xdx=x1
32 31 a1i φdx1xdx=x1
33 dvexp NMdyyNMdy=yNMyN-M-1
34 16 33 syl φdyyNMdy=yNMyN-M-1
35 oveq1 y=1xyNM=1xNM
36 oveq1 y=1xyN-M-1=1xN-M-1
37 36 oveq2d y=1xNMyN-M-1=NM1xN-M-1
38 5 5 8 10 19 30 32 34 35 37 dvmptco φdx1xNMdx=xNM1xN-M-1-1
39 20 adantr φxN
40 22 adantr φxM
41 39 40 subcld φxNM
42 ax-1cn 1
43 subcl 1x1x
44 42 43 mpan x1x
45 expcl 1xN-M-101xN-M-1
46 44 26 45 syl2anr φx1xN-M-1
47 41 46 10 mul32d φxNM1xN-M-1-1=NM-11xN-M-1
48 20 22 subcld φNM
49 9 a1i φ1
50 48 49 mulcomd φNM-1=-1NM
51 50 oveq1d φNM-11xN-M-1=-1NM1xN-M-1
52 51 adantr φxNM-11xN-M-1=-1NM1xN-M-1
53 47 52 eqtrd φxNM1xN-M-1-1=-1NM1xN-M-1
54 48 mulm1d φ-1NM=NM
55 54 adantr φx-1NM=NM
56 55 oveq1d φx-1NM1xN-M-1=NM1xN-M-1
57 53 56 eqtrd φxNM1xN-M-1-1=NM1xN-M-1
58 57 mpteq2dva φxNM1xN-M-1-1=xNM1xN-M-1
59 38 58 eqtrd φdx1xNMdx=xNM1xN-M-1