Metamath Proof Explorer


Theorem lcmineqlem8

Description: Derivative of (1-x)^(N-M). (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses lcmineqlem8.1 φ M
lcmineqlem8.2 φ N
lcmineqlem8.3 φ M < N
Assertion lcmineqlem8 φ dx 1 x N M d x = x N M 1 x N - M - 1

Proof

Step Hyp Ref Expression
1 lcmineqlem8.1 φ M
2 lcmineqlem8.2 φ N
3 lcmineqlem8.3 φ M < N
4 cnelprrecn
5 4 a1i φ
6 1cnd φ x 1
7 simpr φ x x
8 6 7 subcld φ x 1 x
9 neg1cn 1
10 9 a1i φ x 1
11 simpr φ y y
12 1 nnzd φ M
13 2 nnzd φ N
14 znnsub M N M < N N M
15 12 13 14 syl2anc φ M < N N M
16 3 15 mpbid φ N M
17 16 nnnn0d φ N M 0
18 17 adantr φ y N M 0
19 11 18 expcld φ y y N M
20 2 nncnd φ N
21 20 adantr φ y N
22 1 nncnd φ M
23 22 adantr φ y M
24 21 23 subcld φ y N M
25 nnm1nn0 N M N - M - 1 0
26 16 25 syl φ N - M - 1 0
27 26 adantr φ y N - M - 1 0
28 expcl y N - M - 1 0 y N - M - 1
29 11 27 28 syl2anc φ y y N - M - 1
30 24 29 mulcld φ y N M y N - M - 1
31 lcmineqlem7 dx 1 x d x = x 1
32 31 a1i φ dx 1 x d x = x 1
33 dvexp N M dy y N M d y = y N M y N - M - 1
34 16 33 syl φ dy y N M d y = y N M y N - M - 1
35 oveq1 y = 1 x y N M = 1 x N M
36 oveq1 y = 1 x y N - M - 1 = 1 x N - M - 1
37 36 oveq2d y = 1 x N M y N - M - 1 = N M 1 x N - M - 1
38 5 5 8 10 19 30 32 34 35 37 dvmptco φ dx 1 x N M d x = x N M 1 x N - M - 1 -1
39 20 adantr φ x N
40 22 adantr φ x M
41 39 40 subcld φ x N M
42 ax-1cn 1
43 subcl 1 x 1 x
44 42 43 mpan x 1 x
45 expcl 1 x N - M - 1 0 1 x N - M - 1
46 44 26 45 syl2anr φ x 1 x N - M - 1
47 41 46 10 mul32d φ x N M 1 x N - M - 1 -1 = N M -1 1 x N - M - 1
48 20 22 subcld φ N M
49 9 a1i φ 1
50 48 49 mulcomd φ N M -1 = -1 N M
51 50 oveq1d φ N M -1 1 x N - M - 1 = -1 N M 1 x N - M - 1
52 51 adantr φ x N M -1 1 x N - M - 1 = -1 N M 1 x N - M - 1
53 47 52 eqtrd φ x N M 1 x N - M - 1 -1 = -1 N M 1 x N - M - 1
54 48 mulm1d φ -1 N M = N M
55 54 adantr φ x -1 N M = N M
56 55 oveq1d φ x -1 N M 1 x N - M - 1 = N M 1 x N - M - 1
57 53 56 eqtrd φ x N M 1 x N - M - 1 -1 = N M 1 x N - M - 1
58 57 mpteq2dva φ x N M 1 x N - M - 1 -1 = x N M 1 x N - M - 1
59 38 58 eqtrd φ dx 1 x N M d x = x N M 1 x N - M - 1