Description: Lemma for ldepspr . (Contributed by AV, 16-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | snlindsntor.b | |
|
snlindsntor.r | |
||
snlindsntor.s | |
||
snlindsntor.0 | |
||
snlindsntor.z | |
||
snlindsntor.t | |
||
ldepsprlem.1 | |
||
ldepsprlem.n | |
||
Assertion | ldepsprlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snlindsntor.b | |
|
2 | snlindsntor.r | |
|
3 | snlindsntor.s | |
|
4 | snlindsntor.0 | |
|
5 | snlindsntor.z | |
|
6 | snlindsntor.t | |
|
7 | ldepsprlem.1 | |
|
8 | ldepsprlem.n | |
|
9 | oveq2 | |
|
10 | 9 | oveq1d | |
11 | simpl | |
|
12 | 2 3 7 | lmod1cl | |
13 | 12 | adantr | |
14 | simpr3 | |
|
15 | simpr2 | |
|
16 | eqid | |
|
17 | 1 2 6 3 16 | lmodvsass | |
18 | 11 13 14 15 17 | syl13anc | |
19 | 18 | eqcomd | |
20 | 19 | oveq1d | |
21 | 2 | lmodring | |
22 | simp3 | |
|
23 | 3 16 7 | ringlidm | |
24 | 21 22 23 | syl2an | |
25 | 24 | oveq1d | |
26 | 25 | oveq1d | |
27 | 2 | lmodfgrp | |
28 | 3 8 | grpinvcl | |
29 | 27 22 28 | syl2an | |
30 | eqid | |
|
31 | eqid | |
|
32 | 1 30 2 6 3 31 | lmodvsdir | |
33 | 11 14 29 15 32 | syl13anc | |
34 | 3 31 4 8 | grprinv | |
35 | 27 22 34 | syl2an | |
36 | 35 | oveq1d | |
37 | 1 2 6 4 5 | lmod0vs | |
38 | 37 | 3ad2antr2 | |
39 | 36 38 | eqtrd | |
40 | 26 33 39 | 3eqtr2d | |
41 | 20 40 | eqtrd | |
42 | 10 41 | sylan9eqr | |
43 | 42 | ex | |