Database
BASIC TOPOLOGY
Topology
Order topology
leordtval2
Next ⟩
leordtval
Metamath Proof Explorer
Ascii
Unicode
Theorem
leordtval2
Description:
The topology of the extended reals.
(Contributed by
Mario Carneiro
, 3-Sep-2015)
Ref
Expression
Hypotheses
leordtval.1
⊢
A
=
ran
x
∈
ℝ
*
⟼
x
+∞
leordtval.2
⊢
B
=
ran
x
∈
ℝ
*
⟼
−∞
x
Assertion
leordtval2
⊢
ordTop
≤
=
topGen
fi
A
∪
B
Proof
Step
Hyp
Ref
Expression
1
leordtval.1
⊢
A
=
ran
x
∈
ℝ
*
⟼
x
+∞
2
leordtval.2
⊢
B
=
ran
x
∈
ℝ
*
⟼
−∞
x
3
letsr
⊢
≤
∈
TosetRel
4
ledm
⊢
ℝ
*
=
dom
≤
5
1
leordtvallem1
⊢
A
=
ran
x
∈
ℝ
*
⟼
y
∈
ℝ
*
|
¬
y
≤
x
6
1
2
leordtvallem2
⊢
B
=
ran
x
∈
ℝ
*
⟼
y
∈
ℝ
*
|
¬
x
≤
y
7
4
5
6
ordtval
⊢
≤
∈
TosetRel
→
ordTop
≤
=
topGen
fi
ℝ
*
∪
A
∪
B
8
3
7
ax-mp
⊢
ordTop
≤
=
topGen
fi
ℝ
*
∪
A
∪
B
9
snex
⊢
ℝ
*
∈
V
10
xrex
⊢
ℝ
*
∈
V
11
10
pwex
⊢
𝒫
ℝ
*
∈
V
12
eqid
⊢
x
∈
ℝ
*
⟼
x
+∞
=
x
∈
ℝ
*
⟼
x
+∞
13
iocssxr
⊢
x
+∞
⊆
ℝ
*
14
10
13
elpwi2
⊢
x
+∞
∈
𝒫
ℝ
*
15
14
a1i
⊢
x
∈
ℝ
*
→
x
+∞
∈
𝒫
ℝ
*
16
12
15
fmpti
⊢
x
∈
ℝ
*
⟼
x
+∞
:
ℝ
*
⟶
𝒫
ℝ
*
17
frn
⊢
x
∈
ℝ
*
⟼
x
+∞
:
ℝ
*
⟶
𝒫
ℝ
*
→
ran
x
∈
ℝ
*
⟼
x
+∞
⊆
𝒫
ℝ
*
18
16
17
ax-mp
⊢
ran
x
∈
ℝ
*
⟼
x
+∞
⊆
𝒫
ℝ
*
19
1
18
eqsstri
⊢
A
⊆
𝒫
ℝ
*
20
eqid
⊢
x
∈
ℝ
*
⟼
−∞
x
=
x
∈
ℝ
*
⟼
−∞
x
21
icossxr
⊢
−∞
x
⊆
ℝ
*
22
10
21
elpwi2
⊢
−∞
x
∈
𝒫
ℝ
*
23
22
a1i
⊢
x
∈
ℝ
*
→
−∞
x
∈
𝒫
ℝ
*
24
20
23
fmpti
⊢
x
∈
ℝ
*
⟼
−∞
x
:
ℝ
*
⟶
𝒫
ℝ
*
25
frn
⊢
x
∈
ℝ
*
⟼
−∞
x
:
ℝ
*
⟶
𝒫
ℝ
*
→
ran
x
∈
ℝ
*
⟼
−∞
x
⊆
𝒫
ℝ
*
26
24
25
ax-mp
⊢
ran
x
∈
ℝ
*
⟼
−∞
x
⊆
𝒫
ℝ
*
27
2
26
eqsstri
⊢
B
⊆
𝒫
ℝ
*
28
19
27
unssi
⊢
A
∪
B
⊆
𝒫
ℝ
*
29
11
28
ssexi
⊢
A
∪
B
∈
V
30
9
29
unex
⊢
ℝ
*
∪
A
∪
B
∈
V
31
ssun2
⊢
A
∪
B
⊆
ℝ
*
∪
A
∪
B
32
fiss
⊢
ℝ
*
∪
A
∪
B
∈
V
∧
A
∪
B
⊆
ℝ
*
∪
A
∪
B
→
fi
A
∪
B
⊆
fi
ℝ
*
∪
A
∪
B
33
30
31
32
mp2an
⊢
fi
A
∪
B
⊆
fi
ℝ
*
∪
A
∪
B
34
fvex
⊢
topGen
fi
A
∪
B
∈
V
35
ovex
⊢
0
+∞
∈
V
36
ovex
⊢
−∞
1
∈
V
37
35
36
unipr
⊢
⋃
0
+∞
−∞
1
=
0
+∞
∪
−∞
1
38
iocssxr
⊢
0
+∞
⊆
ℝ
*
39
icossxr
⊢
−∞
1
⊆
ℝ
*
40
38
39
unssi
⊢
0
+∞
∪
−∞
1
⊆
ℝ
*
41
mnfxr
⊢
−∞
∈
ℝ
*
42
0xr
⊢
0
∈
ℝ
*
43
pnfxr
⊢
+∞
∈
ℝ
*
44
mnflt0
⊢
−∞
<
0
45
0lepnf
⊢
0
≤
+∞
46
df-icc
⊢
.
=
x
∈
ℝ
*
,
y
∈
ℝ
*
⟼
z
∈
ℝ
*
|
x
≤
z
∧
z
≤
y
47
df-ioc
⊢
.
=
x
∈
ℝ
*
,
y
∈
ℝ
*
⟼
z
∈
ℝ
*
|
x
<
z
∧
z
≤
y
48
xrltnle
⊢
0
∈
ℝ
*
∧
w
∈
ℝ
*
→
0
<
w
↔
¬
w
≤
0
49
xrletr
⊢
w
∈
ℝ
*
∧
0
∈
ℝ
*
∧
+∞
∈
ℝ
*
→
w
≤
0
∧
0
≤
+∞
→
w
≤
+∞
50
xrlttr
⊢
−∞
∈
ℝ
*
∧
0
∈
ℝ
*
∧
w
∈
ℝ
*
→
−∞
<
0
∧
0
<
w
→
−∞
<
w
51
xrltle
⊢
−∞
∈
ℝ
*
∧
w
∈
ℝ
*
→
−∞
<
w
→
−∞
≤
w
52
51
3adant2
⊢
−∞
∈
ℝ
*
∧
0
∈
ℝ
*
∧
w
∈
ℝ
*
→
−∞
<
w
→
−∞
≤
w
53
50
52
syld
⊢
−∞
∈
ℝ
*
∧
0
∈
ℝ
*
∧
w
∈
ℝ
*
→
−∞
<
0
∧
0
<
w
→
−∞
≤
w
54
46
47
48
46
49
53
ixxun
⊢
−∞
∈
ℝ
*
∧
0
∈
ℝ
*
∧
+∞
∈
ℝ
*
∧
−∞
<
0
∧
0
≤
+∞
→
−∞
0
∪
0
+∞
=
−∞
+∞
55
44
45
54
mpanr12
⊢
−∞
∈
ℝ
*
∧
0
∈
ℝ
*
∧
+∞
∈
ℝ
*
→
−∞
0
∪
0
+∞
=
−∞
+∞
56
41
42
43
55
mp3an
⊢
−∞
0
∪
0
+∞
=
−∞
+∞
57
1xr
⊢
1
∈
ℝ
*
58
0lt1
⊢
0
<
1
59
df-ico
⊢
.
=
x
∈
ℝ
*
,
y
∈
ℝ
*
⟼
z
∈
ℝ
*
|
x
≤
z
∧
z
<
y
60
xrlelttr
⊢
w
∈
ℝ
*
∧
0
∈
ℝ
*
∧
1
∈
ℝ
*
→
w
≤
0
∧
0
<
1
→
w
<
1
61
59
46
60
ixxss2
⊢
1
∈
ℝ
*
∧
0
<
1
→
−∞
0
⊆
−∞
1
62
57
58
61
mp2an
⊢
−∞
0
⊆
−∞
1
63
unss1
⊢
−∞
0
⊆
−∞
1
→
−∞
0
∪
0
+∞
⊆
−∞
1
∪
0
+∞
64
62
63
ax-mp
⊢
−∞
0
∪
0
+∞
⊆
−∞
1
∪
0
+∞
65
56
64
eqsstrri
⊢
−∞
+∞
⊆
−∞
1
∪
0
+∞
66
iccmax
⊢
−∞
+∞
=
ℝ
*
67
uncom
⊢
−∞
1
∪
0
+∞
=
0
+∞
∪
−∞
1
68
65
66
67
3sstr3i
⊢
ℝ
*
⊆
0
+∞
∪
−∞
1
69
40
68
eqssi
⊢
0
+∞
∪
−∞
1
=
ℝ
*
70
37
69
eqtri
⊢
⋃
0
+∞
−∞
1
=
ℝ
*
71
fvex
⊢
fi
A
∪
B
∈
V
72
ssun1
⊢
A
⊆
A
∪
B
73
eqid
⊢
0
+∞
=
0
+∞
74
oveq1
⊢
x
=
0
→
x
+∞
=
0
+∞
75
74
rspceeqv
⊢
0
∈
ℝ
*
∧
0
+∞
=
0
+∞
→
∃
x
∈
ℝ
*
0
+∞
=
x
+∞
76
42
73
75
mp2an
⊢
∃
x
∈
ℝ
*
0
+∞
=
x
+∞
77
ovex
⊢
x
+∞
∈
V
78
12
77
elrnmpti
⊢
0
+∞
∈
ran
x
∈
ℝ
*
⟼
x
+∞
↔
∃
x
∈
ℝ
*
0
+∞
=
x
+∞
79
76
78
mpbir
⊢
0
+∞
∈
ran
x
∈
ℝ
*
⟼
x
+∞
80
79
1
eleqtrri
⊢
0
+∞
∈
A
81
72
80
sselii
⊢
0
+∞
∈
A
∪
B
82
ssun2
⊢
B
⊆
A
∪
B
83
eqid
⊢
−∞
1
=
−∞
1
84
oveq2
⊢
x
=
1
→
−∞
x
=
−∞
1
85
84
rspceeqv
⊢
1
∈
ℝ
*
∧
−∞
1
=
−∞
1
→
∃
x
∈
ℝ
*
−∞
1
=
−∞
x
86
57
83
85
mp2an
⊢
∃
x
∈
ℝ
*
−∞
1
=
−∞
x
87
ovex
⊢
−∞
x
∈
V
88
20
87
elrnmpti
⊢
−∞
1
∈
ran
x
∈
ℝ
*
⟼
−∞
x
↔
∃
x
∈
ℝ
*
−∞
1
=
−∞
x
89
86
88
mpbir
⊢
−∞
1
∈
ran
x
∈
ℝ
*
⟼
−∞
x
90
89
2
eleqtrri
⊢
−∞
1
∈
B
91
82
90
sselii
⊢
−∞
1
∈
A
∪
B
92
prssi
⊢
0
+∞
∈
A
∪
B
∧
−∞
1
∈
A
∪
B
→
0
+∞
−∞
1
⊆
A
∪
B
93
81
91
92
mp2an
⊢
0
+∞
−∞
1
⊆
A
∪
B
94
ssfii
⊢
A
∪
B
∈
V
→
A
∪
B
⊆
fi
A
∪
B
95
29
94
ax-mp
⊢
A
∪
B
⊆
fi
A
∪
B
96
93
95
sstri
⊢
0
+∞
−∞
1
⊆
fi
A
∪
B
97
eltg3i
⊢
fi
A
∪
B
∈
V
∧
0
+∞
−∞
1
⊆
fi
A
∪
B
→
⋃
0
+∞
−∞
1
∈
topGen
fi
A
∪
B
98
71
96
97
mp2an
⊢
⋃
0
+∞
−∞
1
∈
topGen
fi
A
∪
B
99
70
98
eqeltrri
⊢
ℝ
*
∈
topGen
fi
A
∪
B
100
snssi
⊢
ℝ
*
∈
topGen
fi
A
∪
B
→
ℝ
*
⊆
topGen
fi
A
∪
B
101
99
100
ax-mp
⊢
ℝ
*
⊆
topGen
fi
A
∪
B
102
bastg
⊢
fi
A
∪
B
∈
V
→
fi
A
∪
B
⊆
topGen
fi
A
∪
B
103
71
102
ax-mp
⊢
fi
A
∪
B
⊆
topGen
fi
A
∪
B
104
95
103
sstri
⊢
A
∪
B
⊆
topGen
fi
A
∪
B
105
101
104
unssi
⊢
ℝ
*
∪
A
∪
B
⊆
topGen
fi
A
∪
B
106
fiss
⊢
topGen
fi
A
∪
B
∈
V
∧
ℝ
*
∪
A
∪
B
⊆
topGen
fi
A
∪
B
→
fi
ℝ
*
∪
A
∪
B
⊆
fi
topGen
fi
A
∪
B
107
34
105
106
mp2an
⊢
fi
ℝ
*
∪
A
∪
B
⊆
fi
topGen
fi
A
∪
B
108
fibas
⊢
fi
A
∪
B
∈
TopBases
109
tgcl
⊢
fi
A
∪
B
∈
TopBases
→
topGen
fi
A
∪
B
∈
Top
110
fitop
⊢
topGen
fi
A
∪
B
∈
Top
→
fi
topGen
fi
A
∪
B
=
topGen
fi
A
∪
B
111
108
109
110
mp2b
⊢
fi
topGen
fi
A
∪
B
=
topGen
fi
A
∪
B
112
107
111
sseqtri
⊢
fi
ℝ
*
∪
A
∪
B
⊆
topGen
fi
A
∪
B
113
2basgen
⊢
fi
A
∪
B
⊆
fi
ℝ
*
∪
A
∪
B
∧
fi
ℝ
*
∪
A
∪
B
⊆
topGen
fi
A
∪
B
→
topGen
fi
A
∪
B
=
topGen
fi
ℝ
*
∪
A
∪
B
114
33
112
113
mp2an
⊢
topGen
fi
A
∪
B
=
topGen
fi
ℝ
*
∪
A
∪
B
115
8
114
eqtr4i
⊢
ordTop
≤
=
topGen
fi
A
∪
B