Metamath Proof Explorer


Theorem leordtval2

Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypotheses leordtval.1 A=ranx*x+∞
leordtval.2 B=ranx*−∞x
Assertion leordtval2 ordTop=topGenfiAB

Proof

Step Hyp Ref Expression
1 leordtval.1 A=ranx*x+∞
2 leordtval.2 B=ranx*−∞x
3 letsr TosetRel
4 ledm *=dom
5 1 leordtvallem1 A=ranx*y*|¬yx
6 1 2 leordtvallem2 B=ranx*y*|¬xy
7 4 5 6 ordtval TosetRelordTop=topGenfi*AB
8 3 7 ax-mp ordTop=topGenfi*AB
9 snex *V
10 xrex *V
11 10 pwex 𝒫*V
12 eqid x*x+∞=x*x+∞
13 iocssxr x+∞*
14 10 13 elpwi2 x+∞𝒫*
15 14 a1i x*x+∞𝒫*
16 12 15 fmpti x*x+∞:*𝒫*
17 frn x*x+∞:*𝒫*ranx*x+∞𝒫*
18 16 17 ax-mp ranx*x+∞𝒫*
19 1 18 eqsstri A𝒫*
20 eqid x*−∞x=x*−∞x
21 icossxr −∞x*
22 10 21 elpwi2 −∞x𝒫*
23 22 a1i x*−∞x𝒫*
24 20 23 fmpti x*−∞x:*𝒫*
25 frn x*−∞x:*𝒫*ranx*−∞x𝒫*
26 24 25 ax-mp ranx*−∞x𝒫*
27 2 26 eqsstri B𝒫*
28 19 27 unssi AB𝒫*
29 11 28 ssexi ABV
30 9 29 unex *ABV
31 ssun2 AB*AB
32 fiss *ABVAB*ABfiABfi*AB
33 30 31 32 mp2an fiABfi*AB
34 fvex topGenfiABV
35 ovex 0+∞V
36 ovex −∞1V
37 35 36 unipr 0+∞−∞1=0+∞−∞1
38 iocssxr 0+∞*
39 icossxr −∞1*
40 38 39 unssi 0+∞−∞1*
41 mnfxr −∞*
42 0xr 0*
43 pnfxr +∞*
44 mnflt0 −∞<0
45 0lepnf 0+∞
46 df-icc .=x*,y*z*|xzzy
47 df-ioc .=x*,y*z*|x<zzy
48 xrltnle 0*w*0<w¬w0
49 xrletr w*0*+∞*w00+∞w+∞
50 xrlttr −∞*0*w*−∞<00<w−∞<w
51 xrltle −∞*w*−∞<w−∞w
52 51 3adant2 −∞*0*w*−∞<w−∞w
53 50 52 syld −∞*0*w*−∞<00<w−∞w
54 46 47 48 46 49 53 ixxun −∞*0*+∞*−∞<00+∞−∞00+∞=−∞+∞
55 44 45 54 mpanr12 −∞*0*+∞*−∞00+∞=−∞+∞
56 41 42 43 55 mp3an −∞00+∞=−∞+∞
57 1xr 1*
58 0lt1 0<1
59 df-ico .=x*,y*z*|xzz<y
60 xrlelttr w*0*1*w00<1w<1
61 59 46 60 ixxss2 1*0<1−∞0−∞1
62 57 58 61 mp2an −∞0−∞1
63 unss1 −∞0−∞1−∞00+∞−∞10+∞
64 62 63 ax-mp −∞00+∞−∞10+∞
65 56 64 eqsstrri −∞+∞−∞10+∞
66 iccmax −∞+∞=*
67 uncom −∞10+∞=0+∞−∞1
68 65 66 67 3sstr3i *0+∞−∞1
69 40 68 eqssi 0+∞−∞1=*
70 37 69 eqtri 0+∞−∞1=*
71 fvex fiABV
72 ssun1 AAB
73 eqid 0+∞=0+∞
74 oveq1 x=0x+∞=0+∞
75 74 rspceeqv 0*0+∞=0+∞x*0+∞=x+∞
76 42 73 75 mp2an x*0+∞=x+∞
77 ovex x+∞V
78 12 77 elrnmpti 0+∞ranx*x+∞x*0+∞=x+∞
79 76 78 mpbir 0+∞ranx*x+∞
80 79 1 eleqtrri 0+∞A
81 72 80 sselii 0+∞AB
82 ssun2 BAB
83 eqid −∞1=−∞1
84 oveq2 x=1−∞x=−∞1
85 84 rspceeqv 1*−∞1=−∞1x*−∞1=−∞x
86 57 83 85 mp2an x*−∞1=−∞x
87 ovex −∞xV
88 20 87 elrnmpti −∞1ranx*−∞xx*−∞1=−∞x
89 86 88 mpbir −∞1ranx*−∞x
90 89 2 eleqtrri −∞1B
91 82 90 sselii −∞1AB
92 prssi 0+∞AB−∞1AB0+∞−∞1AB
93 81 91 92 mp2an 0+∞−∞1AB
94 ssfii ABVABfiAB
95 29 94 ax-mp ABfiAB
96 93 95 sstri 0+∞−∞1fiAB
97 eltg3i fiABV0+∞−∞1fiAB0+∞−∞1topGenfiAB
98 71 96 97 mp2an 0+∞−∞1topGenfiAB
99 70 98 eqeltrri *topGenfiAB
100 snssi *topGenfiAB*topGenfiAB
101 99 100 ax-mp *topGenfiAB
102 bastg fiABVfiABtopGenfiAB
103 71 102 ax-mp fiABtopGenfiAB
104 95 103 sstri ABtopGenfiAB
105 101 104 unssi *ABtopGenfiAB
106 fiss topGenfiABV*ABtopGenfiABfi*ABfitopGenfiAB
107 34 105 106 mp2an fi*ABfitopGenfiAB
108 fibas fiABTopBases
109 tgcl fiABTopBasestopGenfiABTop
110 fitop topGenfiABTopfitopGenfiAB=topGenfiAB
111 108 109 110 mp2b fitopGenfiAB=topGenfiAB
112 107 111 sseqtri fi*ABtopGenfiAB
113 2basgen fiABfi*ABfi*ABtopGenfiABtopGenfiAB=topGenfi*AB
114 33 112 113 mp2an topGenfiAB=topGenfi*AB
115 8 114 eqtr4i ordTop=topGenfiAB