Metamath Proof Explorer


Theorem lfinun

Description: Adding a finite set preserves locally finite covers. (Contributed by Thierry Arnoux, 31-Jan-2020)

Ref Expression
Assertion lfinun ALocFinJBFinBJABLocFinJ

Proof

Step Hyp Ref Expression
1 locfintop ALocFinJJTop
2 1 ad2antrr ALocFinJBFinBJJTop
3 ssequn2 BJJB=J
4 3 biimpi BJJB=J
5 4 adantl ALocFinJBFinBJJB=J
6 eqid J=J
7 eqid A=A
8 6 7 locfinbas ALocFinJJ=A
9 8 ad2antrr ALocFinJBFinBJJ=A
10 9 uneq1d ALocFinJBFinBJJB=AB
11 5 10 eqtr3d ALocFinJBFinBJJ=AB
12 uniun AB=AB
13 11 12 eqtr4di ALocFinJBFinBJJ=AB
14 6 locfinnei ALocFinJxJnJxnsA|snFin
15 14 ad4ant14 ALocFinJBFinBJxJnJxnsA|snFin
16 simpr ALocFinJBFinsA|snFinsA|snFin
17 rabfi BFinsB|snFin
18 17 ad2antlr ALocFinJBFinsA|snFinsB|snFin
19 rabun2 sAB|sn=sA|snsB|sn
20 unfi sA|snFinsB|snFinsA|snsB|snFin
21 19 20 eqeltrid sA|snFinsB|snFinsAB|snFin
22 16 18 21 syl2anc ALocFinJBFinsA|snFinsAB|snFin
23 22 ex ALocFinJBFinsA|snFinsAB|snFin
24 23 ad2antrr ALocFinJBFinBJxJsA|snFinsAB|snFin
25 24 anim2d ALocFinJBFinBJxJxnsA|snFinxnsAB|snFin
26 25 reximdv ALocFinJBFinBJxJnJxnsA|snFinnJxnsAB|snFin
27 15 26 mpd ALocFinJBFinBJxJnJxnsAB|snFin
28 27 ralrimiva ALocFinJBFinBJxJnJxnsAB|snFin
29 2 13 28 3jca ALocFinJBFinBJJTopJ=ABxJnJxnsAB|snFin
30 29 3impa ALocFinJBFinBJJTopJ=ABxJnJxnsAB|snFin
31 eqid AB=AB
32 6 31 islocfin ABLocFinJJTopJ=ABxJnJxnsAB|snFin
33 30 32 sylibr ALocFinJBFinBJABLocFinJ