Metamath Proof Explorer


Theorem lgsdinn0

Description: Variation on lgsdi valid for all M , N but only for positive A . (The exact location of the failure of this law is for A = -u 1 , M = 0 , and some N in which case ( -u 1 /L 0 ) = 1 but ( -u 1 /L N ) = -u 1 when -u 1 is not a quadratic residue mod N .) (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Assertion lgsdinn0 A0MNA/L M N=A/LMA/LN

Proof

Step Hyp Ref Expression
1 oveq2 x=NA/Lx=A/LN
2 1 oveq1d x=NA/LxA/L0=A/LNA/L0
3 2 eqeq2d x=NA/L0=A/LxA/L0A/L0=A/LNA/L0
4 sq1 12=1
5 4 eqeq2i A2=12A2=1
6 nn0re A0A
7 nn0ge0 A00A
8 1re 1
9 0le1 01
10 sq11 A0A101A2=12A=1
11 8 9 10 mpanr12 A0AA2=12A=1
12 6 7 11 syl2anc A0A2=12A=1
13 12 adantr A0xA2=12A=1
14 5 13 bitr3id A0xA2=1A=1
15 14 biimpa A0xA2=1A=1
16 15 oveq1d A0xA2=1A/Lx=1/Lx
17 1lgs x1/Lx=1
18 17 ad2antlr A0xA2=11/Lx=1
19 16 18 eqtrd A0xA2=1A/Lx=1
20 19 oveq1d A0xA2=1A/LxA/L0=1A/L0
21 nn0z A0A
22 21 ad2antrr A0xA2=1A
23 0z 0
24 lgscl A0A/L0
25 22 23 24 sylancl A0xA2=1A/L0
26 25 zcnd A0xA2=1A/L0
27 26 mullidd A0xA2=11A/L0=A/L0
28 20 27 eqtr2d A0xA2=1A/L0=A/LxA/L0
29 lgscl AxA/Lx
30 21 29 sylan A0xA/Lx
31 30 zcnd A0xA/Lx
32 31 adantr A0xA21A/Lx
33 32 mul01d A0xA21A/Lx0=0
34 21 adantr A0xA
35 lgs0 AA/L0=ifA2=110
36 34 35 syl A0xA/L0=ifA2=110
37 ifnefalse A21ifA2=110=0
38 36 37 sylan9eq A0xA21A/L0=0
39 38 oveq2d A0xA21A/LxA/L0=A/Lx0
40 33 39 38 3eqtr4rd A0xA21A/L0=A/LxA/L0
41 28 40 pm2.61dane A0xA/L0=A/LxA/L0
42 41 ralrimiva A0xA/L0=A/LxA/L0
43 42 3ad2ant1 A0MNxA/L0=A/LxA/L0
44 simp3 A0MNN
45 3 43 44 rspcdva A0MNA/L0=A/LNA/L0
46 45 adantr A0MNM=0A/L0=A/LNA/L0
47 21 3ad2ant1 A0MNA
48 47 23 24 sylancl A0MNA/L0
49 48 zcnd A0MNA/L0
50 49 adantr A0MNM=0A/L0
51 lgscl ANA/LN
52 47 44 51 syl2anc A0MNA/LN
53 52 zcnd A0MNA/LN
54 53 adantr A0MNM=0A/LN
55 50 54 mulcomd A0MNM=0A/L0A/LN=A/LNA/L0
56 46 55 eqtr4d A0MNM=0A/L0=A/L0A/LN
57 oveq1 M=0 M N=0 N
58 44 zcnd A0MNN
59 58 mul02d A0MN0 N=0
60 57 59 sylan9eqr A0MNM=0 M N=0
61 60 oveq2d A0MNM=0A/L M N=A/L0
62 simpr A0MNM=0M=0
63 62 oveq2d A0MNM=0A/LM=A/L0
64 63 oveq1d A0MNM=0A/LMA/LN=A/L0A/LN
65 56 61 64 3eqtr4d A0MNM=0A/L M N=A/LMA/LN
66 oveq2 x=MA/Lx=A/LM
67 66 oveq1d x=MA/LxA/L0=A/LMA/L0
68 67 eqeq2d x=MA/L0=A/LxA/L0A/L0=A/LMA/L0
69 simp2 A0MNM
70 68 43 69 rspcdva A0MNA/L0=A/LMA/L0
71 70 adantr A0MNN=0A/L0=A/LMA/L0
72 oveq2 N=0 M N= M0
73 69 zcnd A0MNM
74 73 mul01d A0MN M0=0
75 72 74 sylan9eqr A0MNN=0 M N=0
76 75 oveq2d A0MNN=0A/L M N=A/L0
77 simpr A0MNN=0N=0
78 77 oveq2d A0MNN=0A/LN=A/L0
79 78 oveq2d A0MNN=0A/LMA/LN=A/LMA/L0
80 71 76 79 3eqtr4d A0MNN=0A/L M N=A/LMA/LN
81 lgsdi AMNM0N0A/L M N=A/LMA/LN
82 21 81 syl3anl1 A0MNM0N0A/L M N=A/LMA/LN
83 65 80 82 pm2.61da2ne A0MNA/L M N=A/LMA/LN