| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplrl |
|
| 2 |
|
nnz |
|
| 3 |
1 2
|
syl |
|
| 4 |
|
nnz |
|
| 5 |
4
|
ad3antrrr |
|
| 6 |
|
lgscl |
|
| 7 |
3 5 6
|
syl2anc |
|
| 8 |
7
|
zred |
|
| 9 |
|
absresq |
|
| 10 |
8 9
|
syl |
|
| 11 |
3 5
|
gcdcomd |
|
| 12 |
|
simpr |
|
| 13 |
11 12
|
eqtrd |
|
| 14 |
|
lgsabs1 |
|
| 15 |
3 5 14
|
syl2anc |
|
| 16 |
13 15
|
mpbird |
|
| 17 |
16
|
oveq1d |
|
| 18 |
|
sq1 |
|
| 19 |
17 18
|
eqtrdi |
|
| 20 |
7
|
zcnd |
|
| 21 |
20
|
sqvald |
|
| 22 |
10 19 21
|
3eqtr3d |
|
| 23 |
22
|
oveq2d |
|
| 24 |
|
lgscl |
|
| 25 |
5 3 24
|
syl2anc |
|
| 26 |
25
|
zcnd |
|
| 27 |
26 20 20
|
mulassd |
|
| 28 |
23 27
|
eqtr4d |
|
| 29 |
26
|
mulridd |
|
| 30 |
|
simplll |
|
| 31 |
|
simpllr |
|
| 32 |
|
simplrr |
|
| 33 |
30 31 1 32 12
|
lgsquad2 |
|
| 34 |
33
|
oveq1d |
|
| 35 |
28 29 34
|
3eqtr3d |
|
| 36 |
|
neg1cn |
|
| 37 |
36
|
a1i |
|
| 38 |
|
neg1ne0 |
|
| 39 |
38
|
a1i |
|
| 40 |
4
|
ad3antrrr |
|
| 41 |
|
simpllr |
|
| 42 |
|
1zzd |
|
| 43 |
|
2prm |
|
| 44 |
|
nprmdvds1 |
|
| 45 |
43 44
|
mp1i |
|
| 46 |
|
omoe |
|
| 47 |
40 41 42 45 46
|
syl22anc |
|
| 48 |
|
2z |
|
| 49 |
|
2ne0 |
|
| 50 |
|
peano2zm |
|
| 51 |
40 50
|
syl |
|
| 52 |
|
dvdsval2 |
|
| 53 |
48 49 51 52
|
mp3an12i |
|
| 54 |
47 53
|
mpbid |
|
| 55 |
2
|
adantr |
|
| 56 |
55
|
ad2antlr |
|
| 57 |
|
simplrr |
|
| 58 |
|
omoe |
|
| 59 |
56 57 42 45 58
|
syl22anc |
|
| 60 |
|
peano2zm |
|
| 61 |
56 60
|
syl |
|
| 62 |
|
dvdsval2 |
|
| 63 |
48 49 61 62
|
mp3an12i |
|
| 64 |
59 63
|
mpbid |
|
| 65 |
54 64
|
zmulcld |
|
| 66 |
37 39 65
|
expclzd |
|
| 67 |
66
|
mul01d |
|
| 68 |
|
lgsne0 |
|
| 69 |
|
gcdcom |
|
| 70 |
69
|
eqeq1d |
|
| 71 |
68 70
|
bitrd |
|
| 72 |
2 4 71
|
syl2anr |
|
| 73 |
72
|
necon1bbid |
|
| 74 |
73
|
ad2ant2r |
|
| 75 |
74
|
biimpa |
|
| 76 |
75
|
oveq2d |
|
| 77 |
|
lgsne0 |
|
| 78 |
77
|
necon1bbid |
|
| 79 |
4 2 78
|
syl2an |
|
| 80 |
79
|
ad2ant2r |
|
| 81 |
80
|
biimpa |
|
| 82 |
67 76 81
|
3eqtr4rd |
|
| 83 |
35 82
|
pm2.61dan |
|