Metamath Proof Explorer


Theorem lgsquad3

Description: Extend lgsquad2 to integers which share a factor. (Contributed by Mario Carneiro, 19-Jun-2015)

Ref Expression
Assertion lgsquad3 M¬2MN¬2NM/LN=1M12N12N/LM

Proof

Step Hyp Ref Expression
1 simplrl M¬2MN¬2NMgcdN=1N
2 nnz NN
3 1 2 syl M¬2MN¬2NMgcdN=1N
4 nnz MM
5 4 ad3antrrr M¬2MN¬2NMgcdN=1M
6 lgscl NMN/LM
7 3 5 6 syl2anc M¬2MN¬2NMgcdN=1N/LM
8 7 zred M¬2MN¬2NMgcdN=1N/LM
9 absresq N/LMN/LM2=N/LM2
10 8 9 syl M¬2MN¬2NMgcdN=1N/LM2=N/LM2
11 3 5 gcdcomd M¬2MN¬2NMgcdN=1NgcdM=MgcdN
12 simpr M¬2MN¬2NMgcdN=1MgcdN=1
13 11 12 eqtrd M¬2MN¬2NMgcdN=1NgcdM=1
14 lgsabs1 NMN/LM=1NgcdM=1
15 3 5 14 syl2anc M¬2MN¬2NMgcdN=1N/LM=1NgcdM=1
16 13 15 mpbird M¬2MN¬2NMgcdN=1N/LM=1
17 16 oveq1d M¬2MN¬2NMgcdN=1N/LM2=12
18 sq1 12=1
19 17 18 eqtrdi M¬2MN¬2NMgcdN=1N/LM2=1
20 7 zcnd M¬2MN¬2NMgcdN=1N/LM
21 20 sqvald M¬2MN¬2NMgcdN=1N/LM2=N/LMN/LM
22 10 19 21 3eqtr3d M¬2MN¬2NMgcdN=11=N/LMN/LM
23 22 oveq2d M¬2MN¬2NMgcdN=1M/LN1=M/LNN/LMN/LM
24 lgscl MNM/LN
25 5 3 24 syl2anc M¬2MN¬2NMgcdN=1M/LN
26 25 zcnd M¬2MN¬2NMgcdN=1M/LN
27 26 20 20 mulassd M¬2MN¬2NMgcdN=1M/LNN/LMN/LM=M/LNN/LMN/LM
28 23 27 eqtr4d M¬2MN¬2NMgcdN=1M/LN1=M/LNN/LMN/LM
29 26 mulridd M¬2MN¬2NMgcdN=1M/LN1=M/LN
30 simplll M¬2MN¬2NMgcdN=1M
31 simpllr M¬2MN¬2NMgcdN=1¬2M
32 simplrr M¬2MN¬2NMgcdN=1¬2N
33 30 31 1 32 12 lgsquad2 M¬2MN¬2NMgcdN=1M/LNN/LM=1M12N12
34 33 oveq1d M¬2MN¬2NMgcdN=1M/LNN/LMN/LM=1M12N12N/LM
35 28 29 34 3eqtr3d M¬2MN¬2NMgcdN=1M/LN=1M12N12N/LM
36 neg1cn 1
37 36 a1i M¬2MN¬2N¬MgcdN=11
38 neg1ne0 10
39 38 a1i M¬2MN¬2N¬MgcdN=110
40 4 ad3antrrr M¬2MN¬2N¬MgcdN=1M
41 simpllr M¬2MN¬2N¬MgcdN=1¬2M
42 1zzd M¬2MN¬2N¬MgcdN=11
43 2prm 2
44 nprmdvds1 2¬21
45 43 44 mp1i M¬2MN¬2N¬MgcdN=1¬21
46 omoe M¬2M1¬212M1
47 40 41 42 45 46 syl22anc M¬2MN¬2N¬MgcdN=12M1
48 2z 2
49 2ne0 20
50 peano2zm MM1
51 40 50 syl M¬2MN¬2N¬MgcdN=1M1
52 dvdsval2 220M12M1M12
53 48 49 51 52 mp3an12i M¬2MN¬2N¬MgcdN=12M1M12
54 47 53 mpbid M¬2MN¬2N¬MgcdN=1M12
55 2 adantr N¬2NN
56 55 ad2antlr M¬2MN¬2N¬MgcdN=1N
57 simplrr M¬2MN¬2N¬MgcdN=1¬2N
58 omoe N¬2N1¬212N1
59 56 57 42 45 58 syl22anc M¬2MN¬2N¬MgcdN=12N1
60 peano2zm NN1
61 56 60 syl M¬2MN¬2N¬MgcdN=1N1
62 dvdsval2 220N12N1N12
63 48 49 61 62 mp3an12i M¬2MN¬2N¬MgcdN=12N1N12
64 59 63 mpbid M¬2MN¬2N¬MgcdN=1N12
65 54 64 zmulcld M¬2MN¬2N¬MgcdN=1M12N12
66 37 39 65 expclzd M¬2MN¬2N¬MgcdN=11M12N12
67 66 mul01d M¬2MN¬2N¬MgcdN=11M12N120=0
68 lgsne0 NMN/LM0NgcdM=1
69 gcdcom NMNgcdM=MgcdN
70 69 eqeq1d NMNgcdM=1MgcdN=1
71 68 70 bitrd NMN/LM0MgcdN=1
72 2 4 71 syl2anr MNN/LM0MgcdN=1
73 72 necon1bbid MN¬MgcdN=1N/LM=0
74 73 ad2ant2r M¬2MN¬2N¬MgcdN=1N/LM=0
75 74 biimpa M¬2MN¬2N¬MgcdN=1N/LM=0
76 75 oveq2d M¬2MN¬2N¬MgcdN=11M12N12N/LM=1M12N120
77 lgsne0 MNM/LN0MgcdN=1
78 77 necon1bbid MN¬MgcdN=1M/LN=0
79 4 2 78 syl2an MN¬MgcdN=1M/LN=0
80 79 ad2ant2r M¬2MN¬2N¬MgcdN=1M/LN=0
81 80 biimpa M¬2MN¬2N¬MgcdN=1M/LN=0
82 67 76 81 3eqtr4rd M¬2MN¬2N¬MgcdN=1M/LN=1M12N12N/LM
83 35 82 pm2.61dan M¬2MN¬2NM/LN=1M12N12N/LM