Description: The inferior limit of a function is +oo if and only if every real number is the lower bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | liminfpnfuz.1 | |
|
liminfpnfuz.2 | |
||
liminfpnfuz.3 | |
||
liminfpnfuz.4 | |
||
Assertion | liminfpnfuz | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | liminfpnfuz.1 | |
|
2 | liminfpnfuz.2 | |
|
3 | liminfpnfuz.3 | |
|
4 | liminfpnfuz.4 | |
|
5 | nfv | |
|
6 | nfcv | |
|
7 | 5 6 2 3 4 | liminfvaluz3 | |
8 | nfcv | |
|
9 | 1 8 | nffv | |
10 | 9 | nfxneg | |
11 | nfcv | |
|
12 | fveq2 | |
|
13 | 12 | xnegeqd | |
14 | 10 11 13 | cbvmpt | |
15 | 14 | fveq2i | |
16 | 15 | xnegeqi | |
17 | 7 16 | eqtrdi | |
18 | 17 | eqeq1d | |
19 | xnegmnf | |
|
20 | 19 | eqcomi | |
21 | 20 | a1i | |
22 | 21 | eqeq2d | |
23 | 3 | fvexi | |
24 | 23 | mptex | |
25 | 24 | a1i | |
26 | 25 | limsupcld | |
27 | mnfxr | |
|
28 | xneg11 | |
|
29 | 26 27 28 | sylancl | |
30 | 22 29 | bitrd | |
31 | 3 | uztrn2 | |
32 | xnegex | |
|
33 | fvmpt4 | |
|
34 | 31 32 33 | sylancl | |
35 | 34 | breq1d | |
36 | 35 | ralbidva | |
37 | 36 | rexbiia | |
38 | 37 | ralbii | |
39 | 38 | a1i | |
40 | nfmpt1 | |
|
41 | 4 | ffvelcdmda | |
42 | 41 | xnegcld | |
43 | 14 | eqcomi | |
44 | 42 43 | fmptd | |
45 | 40 2 3 44 | limsupmnfuz | |
46 | 1 3 4 | xlimpnfxnegmnf | |
47 | 39 45 46 | 3bitr4d | |
48 | 18 30 47 | 3bitrd | |