Metamath Proof Explorer


Theorem liminfpnfuz

Description: The inferior limit of a function is +oo if and only if every real number is the lower bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses liminfpnfuz.1 _ j F
liminfpnfuz.2 φ M
liminfpnfuz.3 Z = M
liminfpnfuz.4 φ F : Z *
Assertion liminfpnfuz φ lim inf F = +∞ x k Z j k x F j

Proof

Step Hyp Ref Expression
1 liminfpnfuz.1 _ j F
2 liminfpnfuz.2 φ M
3 liminfpnfuz.3 Z = M
4 liminfpnfuz.4 φ F : Z *
5 nfv l φ
6 nfcv _ l F
7 5 6 2 3 4 liminfvaluz3 φ lim inf F = lim sup l Z F l
8 nfcv _ j l
9 1 8 nffv _ j F l
10 9 nfxneg _ j F l
11 nfcv _ l F j
12 fveq2 l = j F l = F j
13 12 xnegeqd l = j F l = F j
14 10 11 13 cbvmpt l Z F l = j Z F j
15 14 fveq2i lim sup l Z F l = lim sup j Z F j
16 15 xnegeqi lim sup l Z F l = lim sup j Z F j
17 7 16 eqtrdi φ lim inf F = lim sup j Z F j
18 17 eqeq1d φ lim inf F = +∞ lim sup j Z F j = +∞
19 xnegmnf −∞ = +∞
20 19 eqcomi +∞ = −∞
21 20 a1i φ +∞ = −∞
22 21 eqeq2d φ lim sup j Z F j = +∞ lim sup j Z F j = −∞
23 3 fvexi Z V
24 23 mptex j Z F j V
25 24 a1i φ j Z F j V
26 25 limsupcld φ lim sup j Z F j *
27 mnfxr −∞ *
28 xneg11 lim sup j Z F j * −∞ * lim sup j Z F j = −∞ lim sup j Z F j = −∞
29 26 27 28 sylancl φ lim sup j Z F j = −∞ lim sup j Z F j = −∞
30 22 29 bitrd φ lim sup j Z F j = +∞ lim sup j Z F j = −∞
31 3 uztrn2 k Z j k j Z
32 xnegex F j V
33 fvmpt4 j Z F j V j Z F j j = F j
34 31 32 33 sylancl k Z j k j Z F j j = F j
35 34 breq1d k Z j k j Z F j j x F j x
36 35 ralbidva k Z j k j Z F j j x j k F j x
37 36 rexbiia k Z j k j Z F j j x k Z j k F j x
38 37 ralbii x k Z j k j Z F j j x x k Z j k F j x
39 38 a1i φ x k Z j k j Z F j j x x k Z j k F j x
40 nfmpt1 _ j j Z F j
41 4 ffvelrnda φ l Z F l *
42 41 xnegcld φ l Z F l *
43 14 eqcomi j Z F j = l Z F l
44 42 43 fmptd φ j Z F j : Z *
45 40 2 3 44 limsupmnfuz φ lim sup j Z F j = −∞ x k Z j k j Z F j j x
46 1 3 4 xlimpnfxnegmnf φ x k Z j k x F j x k Z j k F j x
47 39 45 46 3bitr4d φ lim sup j Z F j = −∞ x k Z j k x F j
48 18 30 47 3bitrd φ lim inf F = +∞ x k Z j k x F j