Metamath Proof Explorer


Theorem liminfpnfuz

Description: The inferior limit of a function is +oo if and only if every real number is the lower bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses liminfpnfuz.1 _jF
liminfpnfuz.2 φM
liminfpnfuz.3 Z=M
liminfpnfuz.4 φF:Z*
Assertion liminfpnfuz φlim infF=+∞xkZjkxFj

Proof

Step Hyp Ref Expression
1 liminfpnfuz.1 _jF
2 liminfpnfuz.2 φM
3 liminfpnfuz.3 Z=M
4 liminfpnfuz.4 φF:Z*
5 nfv lφ
6 nfcv _lF
7 5 6 2 3 4 liminfvaluz3 φlim infF=lim suplZFl
8 nfcv _jl
9 1 8 nffv _jFl
10 9 nfxneg _jFl
11 nfcv _lFj
12 fveq2 l=jFl=Fj
13 12 xnegeqd l=jFl=Fj
14 10 11 13 cbvmpt lZFl=jZFj
15 14 fveq2i lim suplZFl=lim supjZFj
16 15 xnegeqi lim suplZFl=lim supjZFj
17 7 16 eqtrdi φlim infF=lim supjZFj
18 17 eqeq1d φlim infF=+∞lim supjZFj=+∞
19 xnegmnf −∞=+∞
20 19 eqcomi +∞=−∞
21 20 a1i φ+∞=−∞
22 21 eqeq2d φlim supjZFj=+∞lim supjZFj=−∞
23 3 fvexi ZV
24 23 mptex jZFjV
25 24 a1i φjZFjV
26 25 limsupcld φlim supjZFj*
27 mnfxr −∞*
28 xneg11 lim supjZFj*−∞*lim supjZFj=−∞lim supjZFj=−∞
29 26 27 28 sylancl φlim supjZFj=−∞lim supjZFj=−∞
30 22 29 bitrd φlim supjZFj=+∞lim supjZFj=−∞
31 3 uztrn2 kZjkjZ
32 xnegex FjV
33 fvmpt4 jZFjVjZFjj=Fj
34 31 32 33 sylancl kZjkjZFjj=Fj
35 34 breq1d kZjkjZFjjxFjx
36 35 ralbidva kZjkjZFjjxjkFjx
37 36 rexbiia kZjkjZFjjxkZjkFjx
38 37 ralbii xkZjkjZFjjxxkZjkFjx
39 38 a1i φxkZjkjZFjjxxkZjkFjx
40 nfmpt1 _jjZFj
41 4 ffvelcdmda φlZFl*
42 41 xnegcld φlZFl*
43 14 eqcomi jZFj=lZFl
44 42 43 fmptd φjZFj:Z*
45 40 2 3 44 limsupmnfuz φlim supjZFj=−∞xkZjkjZFjjx
46 1 3 4 xlimpnfxnegmnf φxkZjkxFjxkZjkFjx
47 39 45 46 3bitr4d φlim supjZFj=−∞xkZjkxFj
48 18 30 47 3bitrd φlim infF=+∞xkZjkxFj