Metamath Proof Explorer


Theorem limsuplt

Description: The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 12-Sep-2020)

Ref Expression
Hypothesis limsupval.1 G=ksupFk+∞**<
Assertion limsuplt BF:B*A*lim supF<AjGj<A

Proof

Step Hyp Ref Expression
1 limsupval.1 G=ksupFk+∞**<
2 1 limsuple BF:B*A*Alim supFjAGj
3 2 notbid BF:B*A*¬Alim supF¬jAGj
4 rexnal j¬AGj¬jAGj
5 3 4 bitr4di BF:B*A*¬Alim supFj¬AGj
6 simp2 BF:B*A*F:B*
7 reex V
8 7 ssex BBV
9 8 3ad2ant1 BF:B*A*BV
10 xrex *V
11 10 a1i BF:B*A**V
12 fex2 F:B*BV*VFV
13 6 9 11 12 syl3anc BF:B*A*FV
14 limsupcl FVlim supF*
15 13 14 syl BF:B*A*lim supF*
16 simp3 BF:B*A*A*
17 xrltnle lim supF*A*lim supF<A¬Alim supF
18 15 16 17 syl2anc BF:B*A*lim supF<A¬Alim supF
19 1 limsupgf G:*
20 19 ffvelcdmi jGj*
21 xrltnle Gj*A*Gj<A¬AGj
22 20 16 21 syl2anr BF:B*A*jGj<A¬AGj
23 22 rexbidva BF:B*A*jGj<Aj¬AGj
24 5 18 23 3bitr4d BF:B*A*lim supF<AjGj<A