Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limsupre2.1 | |
|
limsupre2.2 | |
||
limsupre2.3 | |
||
Assertion | limsupre2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupre2.1 | |
|
2 | limsupre2.2 | |
|
3 | limsupre2.3 | |
|
4 | nfcv | |
|
5 | 4 2 3 | limsupre2lem | |
6 | breq1 | |
|
7 | 6 | anbi2d | |
8 | 7 | rexbidv | |
9 | 8 | ralbidv | |
10 | breq1 | |
|
11 | 10 | anbi1d | |
12 | 11 | rexbidv | |
13 | nfv | |
|
14 | nfcv | |
|
15 | nfcv | |
|
16 | nfcv | |
|
17 | 1 16 | nffv | |
18 | 14 15 17 | nfbr | |
19 | 13 18 | nfan | |
20 | nfv | |
|
21 | breq2 | |
|
22 | fveq2 | |
|
23 | 22 | breq2d | |
24 | 21 23 | anbi12d | |
25 | 19 20 24 | cbvrexw | |
26 | 25 | a1i | |
27 | 12 26 | bitrd | |
28 | 27 | cbvralvw | |
29 | 28 | a1i | |
30 | 9 29 | bitrd | |
31 | 30 | cbvrexvw | |
32 | 31 | a1i | |
33 | breq2 | |
|
34 | 33 | imbi2d | |
35 | 34 | ralbidv | |
36 | 35 | rexbidv | |
37 | 10 | imbi1d | |
38 | 37 | ralbidv | |
39 | 17 15 14 | nfbr | |
40 | 13 39 | nfim | |
41 | nfv | |
|
42 | 22 | breq1d | |
43 | 21 42 | imbi12d | |
44 | 40 41 43 | cbvralw | |
45 | 44 | a1i | |
46 | 38 45 | bitrd | |
47 | 46 | cbvrexvw | |
48 | 47 | a1i | |
49 | 36 48 | bitrd | |
50 | 49 | cbvrexvw | |
51 | 50 | a1i | |
52 | 32 51 | anbi12d | |
53 | 5 52 | bitrd | |