Metamath Proof Explorer


Theorem limsupre2

Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupre2.1 _ j F
limsupre2.2 φ A
limsupre2.3 φ F : A *
Assertion limsupre2 φ lim sup F x k j A k j x < F j x k j A k j F j < x

Proof

Step Hyp Ref Expression
1 limsupre2.1 _ j F
2 limsupre2.2 φ A
3 limsupre2.3 φ F : A *
4 nfcv _ l F
5 4 2 3 limsupre2lem φ lim sup F y i l A i l y < F l y i l A i l F l < y
6 breq1 y = x y < F l x < F l
7 6 anbi2d y = x i l y < F l i l x < F l
8 7 rexbidv y = x l A i l y < F l l A i l x < F l
9 8 ralbidv y = x i l A i l y < F l i l A i l x < F l
10 breq1 i = k i l k l
11 10 anbi1d i = k i l x < F l k l x < F l
12 11 rexbidv i = k l A i l x < F l l A k l x < F l
13 nfv j k l
14 nfcv _ j x
15 nfcv _ j <
16 nfcv _ j l
17 1 16 nffv _ j F l
18 14 15 17 nfbr j x < F l
19 13 18 nfan j k l x < F l
20 nfv l k j x < F j
21 breq2 l = j k l k j
22 fveq2 l = j F l = F j
23 22 breq2d l = j x < F l x < F j
24 21 23 anbi12d l = j k l x < F l k j x < F j
25 19 20 24 cbvrexw l A k l x < F l j A k j x < F j
26 25 a1i i = k l A k l x < F l j A k j x < F j
27 12 26 bitrd i = k l A i l x < F l j A k j x < F j
28 27 cbvralvw i l A i l x < F l k j A k j x < F j
29 28 a1i y = x i l A i l x < F l k j A k j x < F j
30 9 29 bitrd y = x i l A i l y < F l k j A k j x < F j
31 30 cbvrexvw y i l A i l y < F l x k j A k j x < F j
32 31 a1i φ y i l A i l y < F l x k j A k j x < F j
33 breq2 y = x F l < y F l < x
34 33 imbi2d y = x i l F l < y i l F l < x
35 34 ralbidv y = x l A i l F l < y l A i l F l < x
36 35 rexbidv y = x i l A i l F l < y i l A i l F l < x
37 10 imbi1d i = k i l F l < x k l F l < x
38 37 ralbidv i = k l A i l F l < x l A k l F l < x
39 17 15 14 nfbr j F l < x
40 13 39 nfim j k l F l < x
41 nfv l k j F j < x
42 22 breq1d l = j F l < x F j < x
43 21 42 imbi12d l = j k l F l < x k j F j < x
44 40 41 43 cbvralw l A k l F l < x j A k j F j < x
45 44 a1i i = k l A k l F l < x j A k j F j < x
46 38 45 bitrd i = k l A i l F l < x j A k j F j < x
47 46 cbvrexvw i l A i l F l < x k j A k j F j < x
48 47 a1i y = x i l A i l F l < x k j A k j F j < x
49 36 48 bitrd y = x i l A i l F l < y k j A k j F j < x
50 49 cbvrexvw y i l A i l F l < y x k j A k j F j < x
51 50 a1i φ y i l A i l F l < y x k j A k j F j < x
52 32 51 anbi12d φ y i l A i l y < F l y i l A i l F l < y x k j A k j x < F j x k j A k j F j < x
53 5 52 bitrd φ lim sup F x k j A k j x < F j x k j A k j F j < x