Metamath Proof Explorer


Theorem limsupre2

Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupre2.1 _jF
limsupre2.2 φA
limsupre2.3 φF:A*
Assertion limsupre2 φlim supFxkjAkjx<FjxkjAkjFj<x

Proof

Step Hyp Ref Expression
1 limsupre2.1 _jF
2 limsupre2.2 φA
3 limsupre2.3 φF:A*
4 nfcv _lF
5 4 2 3 limsupre2lem φlim supFyilAily<FlyilAilFl<y
6 breq1 y=xy<Flx<Fl
7 6 anbi2d y=xily<Flilx<Fl
8 7 rexbidv y=xlAily<FllAilx<Fl
9 8 ralbidv y=xilAily<FlilAilx<Fl
10 breq1 i=kilkl
11 10 anbi1d i=kilx<Flklx<Fl
12 11 rexbidv i=klAilx<FllAklx<Fl
13 nfv jkl
14 nfcv _jx
15 nfcv _j<
16 nfcv _jl
17 1 16 nffv _jFl
18 14 15 17 nfbr jx<Fl
19 13 18 nfan jklx<Fl
20 nfv lkjx<Fj
21 breq2 l=jklkj
22 fveq2 l=jFl=Fj
23 22 breq2d l=jx<Flx<Fj
24 21 23 anbi12d l=jklx<Flkjx<Fj
25 19 20 24 cbvrexw lAklx<FljAkjx<Fj
26 25 a1i i=klAklx<FljAkjx<Fj
27 12 26 bitrd i=klAilx<FljAkjx<Fj
28 27 cbvralvw ilAilx<FlkjAkjx<Fj
29 28 a1i y=xilAilx<FlkjAkjx<Fj
30 9 29 bitrd y=xilAily<FlkjAkjx<Fj
31 30 cbvrexvw yilAily<FlxkjAkjx<Fj
32 31 a1i φyilAily<FlxkjAkjx<Fj
33 breq2 y=xFl<yFl<x
34 33 imbi2d y=xilFl<yilFl<x
35 34 ralbidv y=xlAilFl<ylAilFl<x
36 35 rexbidv y=xilAilFl<yilAilFl<x
37 10 imbi1d i=kilFl<xklFl<x
38 37 ralbidv i=klAilFl<xlAklFl<x
39 17 15 14 nfbr jFl<x
40 13 39 nfim jklFl<x
41 nfv lkjFj<x
42 22 breq1d l=jFl<xFj<x
43 21 42 imbi12d l=jklFl<xkjFj<x
44 40 41 43 cbvralw lAklFl<xjAkjFj<x
45 44 a1i i=klAklFl<xjAkjFj<x
46 38 45 bitrd i=klAilFl<xjAkjFj<x
47 46 cbvrexvw ilAilFl<xkjAkjFj<x
48 47 a1i y=xilAilFl<xkjAkjFj<x
49 36 48 bitrd y=xilAilFl<ykjAkjFj<x
50 49 cbvrexvw yilAilFl<yxkjAkjFj<x
51 50 a1i φyilAilFl<yxkjAkjFj<x
52 32 51 anbi12d φyilAily<FlyilAilFl<yxkjAkjx<FjxkjAkjFj<x
53 5 52 bitrd φlim supFxkjAkjx<FjxkjAkjFj<x