| Step | Hyp | Ref | Expression | 
						
							| 1 |  | llnexch.l |  | 
						
							| 2 |  | llnexch.j |  | 
						
							| 3 |  | llnexch.m |  | 
						
							| 4 |  | llnexch.a |  | 
						
							| 5 |  | llnexch.n |  | 
						
							| 6 |  | simp23 |  | 
						
							| 7 |  | simp1 |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 | 8 5 | llnbase |  | 
						
							| 10 | 6 9 | syl |  | 
						
							| 11 | 8 2 4 5 | islln3 |  | 
						
							| 12 | 7 10 11 | syl2anc |  | 
						
							| 13 | 6 12 | mpbid |  | 
						
							| 14 |  | simp3r |  | 
						
							| 15 | 14 | necomd |  | 
						
							| 16 |  | simp11 |  | 
						
							| 17 | 16 | hllatd |  | 
						
							| 18 |  | simp2l |  | 
						
							| 19 | 8 4 | atbase |  | 
						
							| 20 | 18 19 | syl |  | 
						
							| 21 |  | simp2r |  | 
						
							| 22 | 8 4 | atbase |  | 
						
							| 23 | 21 22 | syl |  | 
						
							| 24 |  | simp121 |  | 
						
							| 25 | 8 5 | llnbase |  | 
						
							| 26 | 24 25 | syl |  | 
						
							| 27 | 8 1 2 | latjle12 |  | 
						
							| 28 | 17 20 23 26 27 | syl13anc |  | 
						
							| 29 |  | simp3 |  | 
						
							| 30 | 2 4 5 | llni2 |  | 
						
							| 31 | 16 18 21 29 30 | syl31anc |  | 
						
							| 32 | 1 5 | llncmp |  | 
						
							| 33 | 16 31 24 32 | syl3anc |  | 
						
							| 34 | 28 33 | bitr2d |  | 
						
							| 35 | 34 | necon3abid |  | 
						
							| 36 |  | ianor |  | 
						
							| 37 | 35 36 | bitrdi |  | 
						
							| 38 |  | simpl11 |  | 
						
							| 39 | 24 | adantr |  | 
						
							| 40 |  | simp122 |  | 
						
							| 41 | 40 | adantr |  | 
						
							| 42 |  | simpl2l |  | 
						
							| 43 |  | simpl2r |  | 
						
							| 44 |  | simpr |  | 
						
							| 45 |  | simp13l |  | 
						
							| 46 | 45 | adantr |  | 
						
							| 47 | 1 2 3 4 5 | llnexchb2lem |  | 
						
							| 48 | 38 39 41 42 43 44 46 47 | syl331anc |  | 
						
							| 49 | 48 | ex |  | 
						
							| 50 |  | simpl11 |  | 
						
							| 51 | 24 | adantr |  | 
						
							| 52 | 40 | adantr |  | 
						
							| 53 |  | simpl2r |  | 
						
							| 54 |  | simpl2l |  | 
						
							| 55 |  | simpr |  | 
						
							| 56 | 45 | adantr |  | 
						
							| 57 | 1 2 3 4 5 | llnexchb2lem |  | 
						
							| 58 | 50 51 52 53 54 55 56 57 | syl331anc |  | 
						
							| 59 | 2 4 | hlatjcom |  | 
						
							| 60 | 50 54 53 59 | syl3anc |  | 
						
							| 61 | 60 | breq2d |  | 
						
							| 62 | 60 | oveq2d |  | 
						
							| 63 | 62 | eqeq2d |  | 
						
							| 64 | 58 61 63 | 3bitr4d |  | 
						
							| 65 | 64 | ex |  | 
						
							| 66 | 49 65 | jaod |  | 
						
							| 67 | 37 66 | sylbid |  | 
						
							| 68 |  | neeq1 |  | 
						
							| 69 |  | breq2 |  | 
						
							| 70 |  | oveq2 |  | 
						
							| 71 | 70 | eqeq2d |  | 
						
							| 72 | 69 71 | bibi12d |  | 
						
							| 73 | 68 72 | imbi12d |  | 
						
							| 74 | 67 73 | syl5ibrcom |  | 
						
							| 75 | 74 | 3exp |  | 
						
							| 76 | 75 | imp4a |  | 
						
							| 77 | 76 | rexlimdvv |  | 
						
							| 78 | 13 15 77 | mp2d |  |