Metamath Proof Explorer


Theorem lmif

Description: Line mirror as a function. (Contributed by Thierry Arnoux, 11-Dec-2019)

Ref Expression
Hypotheses ismid.p P=BaseG
ismid.d -˙=distG
ismid.i I=ItvG
ismid.g φG𝒢Tarski
ismid.1 φGDim𝒢2
lmif.m M=lInv𝒢GD
lmif.l L=Line𝒢G
lmif.d φDranL
Assertion lmif φM:PP

Proof

Step Hyp Ref Expression
1 ismid.p P=BaseG
2 ismid.d -˙=distG
3 ismid.i I=ItvG
4 ismid.g φG𝒢Tarski
5 ismid.1 φGDim𝒢2
6 lmif.m M=lInv𝒢GD
7 lmif.l L=Line𝒢G
8 lmif.d φDranL
9 df-lmi lInv𝒢=gVdranLine𝒢gaBasegιbBaseg|amid𝒢gbdd𝒢gaLine𝒢gba=b
10 fveq2 g=GLine𝒢g=Line𝒢G
11 10 7 eqtr4di g=GLine𝒢g=L
12 11 rneqd g=GranLine𝒢g=ranL
13 fveq2 g=GBaseg=BaseG
14 13 1 eqtr4di g=GBaseg=P
15 fveq2 g=Gmid𝒢g=mid𝒢G
16 15 oveqd g=Gamid𝒢gb=amid𝒢Gb
17 16 eleq1d g=Gamid𝒢gbdamid𝒢Gbd
18 eqidd g=Gd=d
19 fveq2 g=G𝒢g=𝒢G
20 11 oveqd g=GaLine𝒢gb=aLb
21 18 19 20 breq123d g=Gd𝒢gaLine𝒢gbd𝒢GaLb
22 21 orbi1d g=Gd𝒢gaLine𝒢gba=bd𝒢GaLba=b
23 17 22 anbi12d g=Gamid𝒢gbdd𝒢gaLine𝒢gba=bamid𝒢Gbdd𝒢GaLba=b
24 14 23 riotaeqbidv g=GιbBaseg|amid𝒢gbdd𝒢gaLine𝒢gba=b=ιbP|amid𝒢Gbdd𝒢GaLba=b
25 14 24 mpteq12dv g=GaBasegιbBaseg|amid𝒢gbdd𝒢gaLine𝒢gba=b=aPιbP|amid𝒢Gbdd𝒢GaLba=b
26 12 25 mpteq12dv g=GdranLine𝒢gaBasegιbBaseg|amid𝒢gbdd𝒢gaLine𝒢gba=b=dranLaPιbP|amid𝒢Gbdd𝒢GaLba=b
27 4 elexd φGV
28 7 fvexi LV
29 rnexg LVranLV
30 mptexg ranLVdranLaPιbP|amid𝒢Gbdd𝒢GaLba=bV
31 28 29 30 mp2b dranLaPιbP|amid𝒢Gbdd𝒢GaLba=bV
32 31 a1i φdranLaPιbP|amid𝒢Gbdd𝒢GaLba=bV
33 9 26 27 32 fvmptd3 φlInv𝒢G=dranLaPιbP|amid𝒢Gbdd𝒢GaLba=b
34 eleq2 d=Damid𝒢Gbdamid𝒢GbD
35 breq1 d=Dd𝒢GaLbD𝒢GaLb
36 35 orbi1d d=Dd𝒢GaLba=bD𝒢GaLba=b
37 34 36 anbi12d d=Damid𝒢Gbdd𝒢GaLba=bamid𝒢GbDD𝒢GaLba=b
38 37 riotabidv d=DιbP|amid𝒢Gbdd𝒢GaLba=b=ιbP|amid𝒢GbDD𝒢GaLba=b
39 38 mpteq2dv d=DaPιbP|amid𝒢Gbdd𝒢GaLba=b=aPιbP|amid𝒢GbDD𝒢GaLba=b
40 39 adantl φd=DaPιbP|amid𝒢Gbdd𝒢GaLba=b=aPιbP|amid𝒢GbDD𝒢GaLba=b
41 1 fvexi PV
42 41 mptex aPιbP|amid𝒢GbDD𝒢GaLba=bV
43 42 a1i φaPιbP|amid𝒢GbDD𝒢GaLba=bV
44 33 40 8 43 fvmptd φlInv𝒢GD=aPιbP|amid𝒢GbDD𝒢GaLba=b
45 6 44 eqtrid φM=aPιbP|amid𝒢GbDD𝒢GaLba=b
46 4 adantr φaPG𝒢Tarski
47 5 adantr φaPGDim𝒢2
48 8 adantr φaPDranL
49 simpr φaPaP
50 1 2 3 46 47 7 48 49 lmieu φaP∃!bPamid𝒢GbDD𝒢GaLba=b
51 riotacl ∃!bPamid𝒢GbDD𝒢GaLba=bιbP|amid𝒢GbDD𝒢GaLba=bP
52 50 51 syl φaPιbP|amid𝒢GbDD𝒢GaLba=bP
53 45 52 fmpt3d φM:PP