Metamath Proof Explorer


Theorem lmimlbs

Description: The isomorphic image of a basis is a basis. (Contributed by Stefan O'Rear, 26-Feb-2015)

Ref Expression
Hypotheses lmimlbs.j J = LBasis S
lmimlbs.k K = LBasis T
Assertion lmimlbs F S LMIso T B J F B K

Proof

Step Hyp Ref Expression
1 lmimlbs.j J = LBasis S
2 lmimlbs.k K = LBasis T
3 lmimlmhm F S LMIso T F S LMHom T
4 eqid Base S = Base S
5 eqid Base T = Base T
6 4 5 lmimf1o F S LMIso T F : Base S 1-1 onto Base T
7 f1of1 F : Base S 1-1 onto Base T F : Base S 1-1 Base T
8 6 7 syl F S LMIso T F : Base S 1-1 Base T
9 1 lbslinds J LIndS S
10 9 sseli B J B LIndS S
11 4 5 lindsmm2 F S LMHom T F : Base S 1-1 Base T B LIndS S F B LIndS T
12 3 8 10 11 syl2an3an F S LMIso T B J F B LIndS T
13 eqid LSpan S = LSpan S
14 4 1 13 lbssp B J LSpan S B = Base S
15 14 adantl F S LMIso T B J LSpan S B = Base S
16 15 imaeq2d F S LMIso T B J F LSpan S B = F Base S
17 4 1 lbsss B J B Base S
18 eqid LSpan T = LSpan T
19 4 13 18 lmhmlsp F S LMHom T B Base S F LSpan S B = LSpan T F B
20 3 17 19 syl2an F S LMIso T B J F LSpan S B = LSpan T F B
21 6 adantr F S LMIso T B J F : Base S 1-1 onto Base T
22 f1ofo F : Base S 1-1 onto Base T F : Base S onto Base T
23 foima F : Base S onto Base T F Base S = Base T
24 21 22 23 3syl F S LMIso T B J F Base S = Base T
25 16 20 24 3eqtr3d F S LMIso T B J LSpan T F B = Base T
26 5 2 18 islbs4 F B K F B LIndS T LSpan T F B = Base T
27 12 25 26 sylanbrc F S LMIso T B J F B K