Description: Express the binary relation "sequence F converges to point P " in a metric space. Definition 1.4-1 of Kreyszig p. 25. The condition F C_ ( CC X. X ) allows to use objects more general than sequences when convenient; see the comment in df-lm . (Contributed by NM, 7-Dec-2006) (Revised by Mario Carneiro, 1-May-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmmbr.2 | |
|
lmmbr.3 | |
||
Assertion | lmmbr2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmmbr.2 | |
|
2 | lmmbr.3 | |
|
3 | 1 2 | lmmbr | |
4 | df-3an | |
|
5 | uzf | |
|
6 | ffn | |
|
7 | reseq2 | |
|
8 | id | |
|
9 | 7 8 | feq12d | |
10 | 9 | rexrn | |
11 | 5 6 10 | mp2b | |
12 | simp2l | |
|
13 | elfvdm | |
|
14 | 13 | 3ad2ant1 | |
15 | cnex | |
|
16 | elpmg | |
|
17 | 14 15 16 | sylancl | |
18 | 12 17 | mpbid | |
19 | 18 | simpld | |
20 | ffvresb | |
|
21 | 19 20 | syl | |
22 | rpxr | |
|
23 | elbl | |
|
24 | 22 23 | syl3an3 | |
25 | xmetsym | |
|
26 | 25 | breq1d | |
27 | 26 | 3expa | |
28 | 27 | pm5.32da | |
29 | 28 | 3adant3 | |
30 | 24 29 | bitrd | |
31 | 30 | 3adant2l | |
32 | 31 | anbi2d | |
33 | 3anass | |
|
34 | 32 33 | bitr4di | |
35 | 34 | ralbidv | |
36 | 21 35 | bitrd | |
37 | 36 | rexbidv | |
38 | 11 37 | bitrid | |
39 | 38 | 3expa | |
40 | 39 | ralbidva | |
41 | 40 | pm5.32da | |
42 | 2 41 | syl | |
43 | 4 42 | bitrid | |
44 | df-3an | |
|
45 | 43 44 | bitr4di | |
46 | 3 45 | bitrd | |