Metamath Proof Explorer


Theorem lmmbr2

Description: Express the binary relation "sequence F converges to point P " in a metric space. Definition 1.4-1 of Kreyszig p. 25. The condition F C_ ( CC X. X ) allows to use objects more general than sequences when convenient; see the comment in df-lm . (Contributed by NM, 7-Dec-2006) (Revised by Mario Carneiro, 1-May-2014)

Ref Expression
Hypotheses lmmbr.2 J=MetOpenD
lmmbr.3 φD∞MetX
Assertion lmmbr2 φFtJPFX𝑝𝑚PXx+jkjkdomFFkXFkDP<x

Proof

Step Hyp Ref Expression
1 lmmbr.2 J=MetOpenD
2 lmmbr.3 φD∞MetX
3 1 2 lmmbr φFtJPFX𝑝𝑚PXx+yranFy:yPballDx
4 df-3an FX𝑝𝑚PXx+yranFy:yPballDxFX𝑝𝑚PXx+yranFy:yPballDx
5 uzf :𝒫
6 ffn :𝒫Fn
7 reseq2 y=jFy=Fj
8 id y=jy=j
9 7 8 feq12d y=jFy:yPballDxFj:jPballDx
10 9 rexrn FnyranFy:yPballDxjFj:jPballDx
11 5 6 10 mp2b yranFy:yPballDxjFj:jPballDx
12 simp2l D∞MetXFX𝑝𝑚PXx+FX𝑝𝑚
13 elfvdm D∞MetXXdom∞Met
14 13 3ad2ant1 D∞MetXFX𝑝𝑚PXx+Xdom∞Met
15 cnex V
16 elpmg Xdom∞MetVFX𝑝𝑚FunFF×X
17 14 15 16 sylancl D∞MetXFX𝑝𝑚PXx+FX𝑝𝑚FunFF×X
18 12 17 mpbid D∞MetXFX𝑝𝑚PXx+FunFF×X
19 18 simpld D∞MetXFX𝑝𝑚PXx+FunF
20 ffvresb FunFFj:jPballDxkjkdomFFkPballDx
21 19 20 syl D∞MetXFX𝑝𝑚PXx+Fj:jPballDxkjkdomFFkPballDx
22 rpxr x+x*
23 elbl D∞MetXPXx*FkPballDxFkXPDFk<x
24 22 23 syl3an3 D∞MetXPXx+FkPballDxFkXPDFk<x
25 xmetsym D∞MetXPXFkXPDFk=FkDP
26 25 breq1d D∞MetXPXFkXPDFk<xFkDP<x
27 26 3expa D∞MetXPXFkXPDFk<xFkDP<x
28 27 pm5.32da D∞MetXPXFkXPDFk<xFkXFkDP<x
29 28 3adant3 D∞MetXPXx+FkXPDFk<xFkXFkDP<x
30 24 29 bitrd D∞MetXPXx+FkPballDxFkXFkDP<x
31 30 3adant2l D∞MetXFX𝑝𝑚PXx+FkPballDxFkXFkDP<x
32 31 anbi2d D∞MetXFX𝑝𝑚PXx+kdomFFkPballDxkdomFFkXFkDP<x
33 3anass kdomFFkXFkDP<xkdomFFkXFkDP<x
34 32 33 bitr4di D∞MetXFX𝑝𝑚PXx+kdomFFkPballDxkdomFFkXFkDP<x
35 34 ralbidv D∞MetXFX𝑝𝑚PXx+kjkdomFFkPballDxkjkdomFFkXFkDP<x
36 21 35 bitrd D∞MetXFX𝑝𝑚PXx+Fj:jPballDxkjkdomFFkXFkDP<x
37 36 rexbidv D∞MetXFX𝑝𝑚PXx+jFj:jPballDxjkjkdomFFkXFkDP<x
38 11 37 bitrid D∞MetXFX𝑝𝑚PXx+yranFy:yPballDxjkjkdomFFkXFkDP<x
39 38 3expa D∞MetXFX𝑝𝑚PXx+yranFy:yPballDxjkjkdomFFkXFkDP<x
40 39 ralbidva D∞MetXFX𝑝𝑚PXx+yranFy:yPballDxx+jkjkdomFFkXFkDP<x
41 40 pm5.32da D∞MetXFX𝑝𝑚PXx+yranFy:yPballDxFX𝑝𝑚PXx+jkjkdomFFkXFkDP<x
42 2 41 syl φFX𝑝𝑚PXx+yranFy:yPballDxFX𝑝𝑚PXx+jkjkdomFFkXFkDP<x
43 4 42 bitrid φFX𝑝𝑚PXx+yranFy:yPballDxFX𝑝𝑚PXx+jkjkdomFFkXFkDP<x
44 df-3an FX𝑝𝑚PXx+jkjkdomFFkXFkDP<xFX𝑝𝑚PXx+jkjkdomFFkXFkDP<x
45 43 44 bitr4di φFX𝑝𝑚PXx+yranFy:yPballDxFX𝑝𝑚PXx+jkjkdomFFkXFkDP<x
46 3 45 bitrd φFtJPFX𝑝𝑚PXx+jkjkdomFFkXFkDP<x