Description: Subtraction of a scalar product in terms of addition. (Contributed by NM, 9-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmodsubvs.v | |
|
lmodsubvs.p | |
||
lmodsubvs.m | |
||
lmodsubvs.t | |
||
lmodsubvs.f | |
||
lmodsubvs.k | |
||
lmodsubvs.n | |
||
lmodsubvs.w | |
||
lmodsubvs.a | |
||
lmodsubvs.x | |
||
lmodsubvs.y | |
||
Assertion | lmodsubvs | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodsubvs.v | |
|
2 | lmodsubvs.p | |
|
3 | lmodsubvs.m | |
|
4 | lmodsubvs.t | |
|
5 | lmodsubvs.f | |
|
6 | lmodsubvs.k | |
|
7 | lmodsubvs.n | |
|
8 | lmodsubvs.w | |
|
9 | lmodsubvs.a | |
|
10 | lmodsubvs.x | |
|
11 | lmodsubvs.y | |
|
12 | 1 5 4 6 | lmodvscl | |
13 | 8 9 11 12 | syl3anc | |
14 | eqid | |
|
15 | 1 2 3 5 4 7 14 | lmodvsubval2 | |
16 | 8 10 13 15 | syl3anc | |
17 | 5 | lmodring | |
18 | 8 17 | syl | |
19 | ringgrp | |
|
20 | 18 19 | syl | |
21 | 6 14 | ringidcl | |
22 | 18 21 | syl | |
23 | 6 7 | grpinvcl | |
24 | 20 22 23 | syl2anc | |
25 | eqid | |
|
26 | 1 5 4 6 25 | lmodvsass | |
27 | 8 24 9 11 26 | syl13anc | |
28 | 6 25 14 7 18 9 | ringnegl | |
29 | 28 | oveq1d | |
30 | 27 29 | eqtr3d | |
31 | 30 | oveq2d | |
32 | 16 31 | eqtrd | |