Metamath Proof Explorer


Theorem lmodsubvs

Description: Subtraction of a scalar product in terms of addition. (Contributed by NM, 9-Apr-2015)

Ref Expression
Hypotheses lmodsubvs.v V=BaseW
lmodsubvs.p +˙=+W
lmodsubvs.m -˙=-W
lmodsubvs.t ·˙=W
lmodsubvs.f F=ScalarW
lmodsubvs.k K=BaseF
lmodsubvs.n N=invgF
lmodsubvs.w φWLMod
lmodsubvs.a φAK
lmodsubvs.x φXV
lmodsubvs.y φYV
Assertion lmodsubvs φX-˙A·˙Y=X+˙NA·˙Y

Proof

Step Hyp Ref Expression
1 lmodsubvs.v V=BaseW
2 lmodsubvs.p +˙=+W
3 lmodsubvs.m -˙=-W
4 lmodsubvs.t ·˙=W
5 lmodsubvs.f F=ScalarW
6 lmodsubvs.k K=BaseF
7 lmodsubvs.n N=invgF
8 lmodsubvs.w φWLMod
9 lmodsubvs.a φAK
10 lmodsubvs.x φXV
11 lmodsubvs.y φYV
12 1 5 4 6 lmodvscl WLModAKYVA·˙YV
13 8 9 11 12 syl3anc φA·˙YV
14 eqid 1F=1F
15 1 2 3 5 4 7 14 lmodvsubval2 WLModXVA·˙YVX-˙A·˙Y=X+˙N1F·˙A·˙Y
16 8 10 13 15 syl3anc φX-˙A·˙Y=X+˙N1F·˙A·˙Y
17 5 lmodring WLModFRing
18 8 17 syl φFRing
19 ringgrp FRingFGrp
20 18 19 syl φFGrp
21 6 14 ringidcl FRing1FK
22 18 21 syl φ1FK
23 6 7 grpinvcl FGrp1FKN1FK
24 20 22 23 syl2anc φN1FK
25 eqid F=F
26 1 5 4 6 25 lmodvsass WLModN1FKAKYVN1FFA·˙Y=N1F·˙A·˙Y
27 8 24 9 11 26 syl13anc φN1FFA·˙Y=N1F·˙A·˙Y
28 6 25 14 7 18 9 ringnegl φN1FFA=NA
29 28 oveq1d φN1FFA·˙Y=NA·˙Y
30 27 29 eqtr3d φN1F·˙A·˙Y=NA·˙Y
31 30 oveq2d φX+˙N1F·˙A·˙Y=X+˙NA·˙Y
32 16 31 eqtrd φX-˙A·˙Y=X+˙NA·˙Y