Metamath Proof Explorer


Theorem logrec

Description: Logarithm of a reciprocal changes sign. (Contributed by Saveliy Skresanov, 28-Dec-2016)

Ref Expression
Assertion logrec A A 0 log A π log A = log 1 A

Proof

Step Hyp Ref Expression
1 reccl A A 0 1 A
2 recne0 A A 0 1 A 0
3 eflog 1 A 1 A 0 e log 1 A = 1 A
4 1 2 3 syl2anc A A 0 e log 1 A = 1 A
5 4 eqcomd A A 0 1 A = e log 1 A
6 5 oveq2d A A 0 1 1 A = 1 e log 1 A
7 eflog A A 0 e log A = A
8 recrec A A 0 1 1 A = A
9 7 8 eqtr4d A A 0 e log A = 1 1 A
10 1 2 logcld A A 0 log 1 A
11 efneg log 1 A e log 1 A = 1 e log 1 A
12 10 11 syl A A 0 e log 1 A = 1 e log 1 A
13 6 9 12 3eqtr4d A A 0 e log A = e log 1 A
14 13 3adant3 A A 0 log A π e log A = e log 1 A
15 14 fveq2d A A 0 log A π log e log A = log e log 1 A
16 logrncl A A 0 log A ran log
17 16 3adant3 A A 0 log A π log A ran log
18 logef log A ran log log e log A = log A
19 17 18 syl A A 0 log A π log e log A = log A
20 df-ne log A π ¬ log A = π
21 lognegb 1 A 1 A 0 1 A + log 1 A = π
22 1 2 21 syl2anc A A 0 1 A + log 1 A = π
23 22 biimprd A A 0 log 1 A = π 1 A +
24 ax-1cn 1
25 divneg2 1 A A 0 1 A = 1 A
26 24 25 mp3an1 A A 0 1 A = 1 A
27 26 eleq1d A A 0 1 A + 1 A +
28 23 27 sylibd A A 0 log 1 A = π 1 A +
29 negcl A A
30 negeq0 A A = 0 A = 0
31 30 necon3bid A A 0 A 0
32 31 biimpa A A 0 A 0
33 rpreccl 1 A + 1 1 A +
34 recrec A A 0 1 1 A = A
35 34 eleq1d A A 0 1 1 A + A +
36 33 35 syl5ib A A 0 1 A + A +
37 29 32 36 syl2an2r A A 0 1 A + A +
38 28 37 syld A A 0 log 1 A = π A +
39 lognegb A A 0 A + log A = π
40 38 39 sylibd A A 0 log 1 A = π log A = π
41 40 con3d A A 0 ¬ log A = π ¬ log 1 A = π
42 41 3impia A A 0 ¬ log A = π ¬ log 1 A = π
43 20 42 syl3an3b A A 0 log A π ¬ log 1 A = π
44 logrncl 1 A 1 A 0 log 1 A ran log
45 1 2 44 syl2anc A A 0 log 1 A ran log
46 logreclem log 1 A ran log ¬ log 1 A = π log 1 A ran log
47 45 46 stoic3 A A 0 ¬ log 1 A = π log 1 A ran log
48 43 47 syld3an3 A A 0 log A π log 1 A ran log
49 logef log 1 A ran log log e log 1 A = log 1 A
50 48 49 syl A A 0 log A π log e log 1 A = log 1 A
51 15 19 50 3eqtr3d A A 0 log A π log A = log 1 A