| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reccl |  | 
						
							| 2 |  | recne0 |  | 
						
							| 3 |  | eflog |  | 
						
							| 4 | 1 2 3 | syl2anc |  | 
						
							| 5 | 4 | eqcomd |  | 
						
							| 6 | 5 | oveq2d |  | 
						
							| 7 |  | eflog |  | 
						
							| 8 |  | recrec |  | 
						
							| 9 | 7 8 | eqtr4d |  | 
						
							| 10 | 1 2 | logcld |  | 
						
							| 11 |  | efneg |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 | 6 9 12 | 3eqtr4d |  | 
						
							| 14 | 13 | 3adant3 |  | 
						
							| 15 | 14 | fveq2d |  | 
						
							| 16 |  | logrncl |  | 
						
							| 17 | 16 | 3adant3 |  | 
						
							| 18 |  | logef |  | 
						
							| 19 | 17 18 | syl |  | 
						
							| 20 |  | df-ne |  | 
						
							| 21 |  | lognegb |  | 
						
							| 22 | 1 2 21 | syl2anc |  | 
						
							| 23 | 22 | biimprd |  | 
						
							| 24 |  | ax-1cn |  | 
						
							| 25 |  | divneg2 |  | 
						
							| 26 | 24 25 | mp3an1 |  | 
						
							| 27 | 26 | eleq1d |  | 
						
							| 28 | 23 27 | sylibd |  | 
						
							| 29 |  | negcl |  | 
						
							| 30 |  | negeq0 |  | 
						
							| 31 | 30 | necon3bid |  | 
						
							| 32 | 31 | biimpa |  | 
						
							| 33 |  | rpreccl |  | 
						
							| 34 |  | recrec |  | 
						
							| 35 | 34 | eleq1d |  | 
						
							| 36 | 33 35 | imbitrid |  | 
						
							| 37 | 29 32 36 | syl2an2r |  | 
						
							| 38 | 28 37 | syld |  | 
						
							| 39 |  | lognegb |  | 
						
							| 40 | 38 39 | sylibd |  | 
						
							| 41 | 40 | con3d |  | 
						
							| 42 | 41 | 3impia |  | 
						
							| 43 | 20 42 | syl3an3b |  | 
						
							| 44 |  | logrncl |  | 
						
							| 45 | 1 2 44 | syl2anc |  | 
						
							| 46 |  | logreclem |  | 
						
							| 47 | 45 46 | stoic3 |  | 
						
							| 48 | 43 47 | syld3an3 |  | 
						
							| 49 |  | logef |  | 
						
							| 50 | 48 49 | syl |  | 
						
							| 51 | 15 19 50 | 3eqtr3d |  |