Metamath Proof Explorer


Theorem lrelat

Description: Subspaces are relatively atomic. Remark 2 of Kalmbach p. 149. ( chrelati analog.) (Contributed by NM, 11-Jan-2015)

Ref Expression
Hypotheses lrelat.s S=LSubSpW
lrelat.p ˙=LSSumW
lrelat.a A=LSAtomsW
lrelat.w φWLMod
lrelat.t φTS
lrelat.u φUS
lrelat.l φTU
Assertion lrelat φqATT˙qT˙qU

Proof

Step Hyp Ref Expression
1 lrelat.s S=LSubSpW
2 lrelat.p ˙=LSSumW
3 lrelat.a A=LSAtomsW
4 lrelat.w φWLMod
5 lrelat.t φTS
6 lrelat.u φUS
7 lrelat.l φTU
8 1 3 4 5 6 7 lpssat φqAqU¬qT
9 ancom qU¬qT¬qTqU
10 4 adantr φqAWLMod
11 1 lsssssubg WLModSSubGrpW
12 10 11 syl φqASSubGrpW
13 5 adantr φqATS
14 12 13 sseldd φqATSubGrpW
15 simpr φqAqA
16 1 3 10 15 lsatlssel φqAqS
17 12 16 sseldd φqAqSubGrpW
18 2 14 17 lssnle φqA¬qTTT˙q
19 7 pssssd φTU
20 19 adantr φqATU
21 20 biantrurd φqAqUTUqU
22 6 adantr φqAUS
23 12 22 sseldd φqAUSubGrpW
24 2 lsmlub TSubGrpWqSubGrpWUSubGrpWTUqUT˙qU
25 14 17 23 24 syl3anc φqATUqUT˙qU
26 21 25 bitrd φqAqUT˙qU
27 18 26 anbi12d φqA¬qTqUTT˙qT˙qU
28 9 27 bitrid φqAqU¬qTTT˙qT˙qU
29 28 rexbidva φqAqU¬qTqATT˙qT˙qU
30 8 29 mpbid φqATT˙qT˙qU