| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lrelat.s |
|
| 2 |
|
lrelat.p |
|
| 3 |
|
lrelat.a |
|
| 4 |
|
lrelat.w |
|
| 5 |
|
lrelat.t |
|
| 6 |
|
lrelat.u |
|
| 7 |
|
lrelat.l |
|
| 8 |
1 3 4 5 6 7
|
lpssat |
|
| 9 |
|
ancom |
|
| 10 |
4
|
adantr |
|
| 11 |
1
|
lsssssubg |
|
| 12 |
10 11
|
syl |
|
| 13 |
5
|
adantr |
|
| 14 |
12 13
|
sseldd |
|
| 15 |
|
simpr |
|
| 16 |
1 3 10 15
|
lsatlssel |
|
| 17 |
12 16
|
sseldd |
|
| 18 |
2 14 17
|
lssnle |
|
| 19 |
7
|
pssssd |
|
| 20 |
19
|
adantr |
|
| 21 |
20
|
biantrurd |
|
| 22 |
6
|
adantr |
|
| 23 |
12 22
|
sseldd |
|
| 24 |
2
|
lsmlub |
|
| 25 |
14 17 23 24
|
syl3anc |
|
| 26 |
21 25
|
bitrd |
|
| 27 |
18 26
|
anbi12d |
|
| 28 |
9 27
|
bitrid |
|
| 29 |
28
|
rexbidva |
|
| 30 |
8 29
|
mpbid |
|