| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsatcv0eq.o |  | 
						
							| 2 |  | lsatcv0eq.p |  | 
						
							| 3 |  | lsatcv0eq.a |  | 
						
							| 4 |  | lsatcv0eq.c |  | 
						
							| 5 |  | lsatcv0eq.w |  | 
						
							| 6 |  | lsatcv0eq.q |  | 
						
							| 7 |  | lsatcv0eq.r |  | 
						
							| 8 | 1 3 5 6 7 | lsatnem0 |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 |  | lveclmod |  | 
						
							| 11 | 5 10 | syl |  | 
						
							| 12 | 9 3 11 6 | lsatlssel |  | 
						
							| 13 | 9 2 1 3 4 5 12 7 | lcvp |  | 
						
							| 14 | 1 3 4 5 6 | lsatcv0 |  | 
						
							| 15 | 14 | biantrurd |  | 
						
							| 16 | 8 13 15 | 3bitrd |  | 
						
							| 17 | 5 | adantr |  | 
						
							| 18 | 1 9 | lsssn0 |  | 
						
							| 19 | 11 18 | syl |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 | 12 | adantr |  | 
						
							| 22 | 9 3 11 7 | lsatlssel |  | 
						
							| 23 | 9 2 | lsmcl |  | 
						
							| 24 | 11 12 22 23 | syl3anc |  | 
						
							| 25 | 24 | adantr |  | 
						
							| 26 |  | simprl |  | 
						
							| 27 |  | simprr |  | 
						
							| 28 | 9 4 17 20 21 25 26 27 | lcvntr |  | 
						
							| 29 | 28 | ex |  | 
						
							| 30 | 16 29 | sylbid |  | 
						
							| 31 | 30 | necon4ad |  | 
						
							| 32 | 9 | lsssssubg |  | 
						
							| 33 | 11 32 | syl |  | 
						
							| 34 | 33 12 | sseldd |  | 
						
							| 35 | 2 | lsmidm |  | 
						
							| 36 | 34 35 | syl |  | 
						
							| 37 | 14 36 | breqtrrd |  | 
						
							| 38 |  | oveq2 |  | 
						
							| 39 | 38 | breq2d |  | 
						
							| 40 | 37 39 | syl5ibcom |  | 
						
							| 41 | 31 40 | impbid |  |