| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lshpkrlem.v |
|
| 2 |
|
lshpkrlem.a |
|
| 3 |
|
lshpkrlem.n |
|
| 4 |
|
lshpkrlem.p |
|
| 5 |
|
lshpkrlem.h |
|
| 6 |
|
lshpkrlem.w |
|
| 7 |
|
lshpkrlem.u |
|
| 8 |
|
lshpkrlem.z |
|
| 9 |
|
lshpkrlem.x |
|
| 10 |
|
lshpkrlem.e |
|
| 11 |
|
lshpkrlem.d |
|
| 12 |
|
lshpkrlem.k |
|
| 13 |
|
lshpkrlem.t |
|
| 14 |
|
lshpkrlem.o |
|
| 15 |
|
lshpkrlem.g |
|
| 16 |
|
simp3l |
|
| 17 |
16
|
oveq2d |
|
| 18 |
|
simp3r |
|
| 19 |
17 18
|
oveq12d |
|
| 20 |
|
simpl1 |
|
| 21 |
|
lveclmod |
|
| 22 |
20 6 21
|
3syl |
|
| 23 |
|
simpl2 |
|
| 24 |
|
simpr2 |
|
| 25 |
|
simpl3 |
|
| 26 |
6
|
adantr |
|
| 27 |
7
|
adantr |
|
| 28 |
8
|
adantr |
|
| 29 |
|
simpr |
|
| 30 |
10
|
adantr |
|
| 31 |
1 2 3 4 5 26 27 28 29 30 11 12 13 14 15
|
lshpkrlem2 |
|
| 32 |
20 25 31
|
syl2anc |
|
| 33 |
20 8
|
syl |
|
| 34 |
1 11 13 12
|
lmodvscl |
|
| 35 |
22 32 33 34
|
syl3anc |
|
| 36 |
1 2 11 13 12
|
lmodvsdi |
|
| 37 |
22 23 24 35 36
|
syl13anc |
|
| 38 |
|
eqid |
|
| 39 |
1 11 13 12 38
|
lmodvsass |
|
| 40 |
22 23 32 33 39
|
syl13anc |
|
| 41 |
40
|
oveq2d |
|
| 42 |
37 41
|
eqtr4d |
|
| 43 |
42
|
oveq1d |
|
| 44 |
1 11 13 12
|
lmodvscl |
|
| 45 |
22 23 24 44
|
syl3anc |
|
| 46 |
11 12 38
|
lmodmcl |
|
| 47 |
22 23 32 46
|
syl3anc |
|
| 48 |
1 11 13 12
|
lmodvscl |
|
| 49 |
22 47 33 48
|
syl3anc |
|
| 50 |
|
simpr3 |
|
| 51 |
|
simpr1 |
|
| 52 |
6
|
adantr |
|
| 53 |
7
|
adantr |
|
| 54 |
8
|
adantr |
|
| 55 |
|
simpr |
|
| 56 |
10
|
adantr |
|
| 57 |
1 2 3 4 5 52 53 54 55 56 11 12 13 14 15
|
lshpkrlem2 |
|
| 58 |
20 51 57
|
syl2anc |
|
| 59 |
1 11 13 12
|
lmodvscl |
|
| 60 |
22 58 33 59
|
syl3anc |
|
| 61 |
1 2
|
lmod4 |
|
| 62 |
22 45 49 50 60 61
|
syl122anc |
|
| 63 |
|
eqid |
|
| 64 |
1 2 11 13 12 63
|
lmodvsdir |
|
| 65 |
22 47 58 33 64
|
syl13anc |
|
| 66 |
65
|
oveq2d |
|
| 67 |
62 66
|
eqtr4d |
|
| 68 |
43 67
|
eqtrd |
|
| 69 |
68
|
3adant3 |
|
| 70 |
19 69
|
eqtrd |
|