Metamath Proof Explorer


Theorem lshpkrlem4

Description: Lemma for lshpkrex . Part of showing linearity of G . (Contributed by NM, 16-Jul-2014)

Ref Expression
Hypotheses lshpkrlem.v V=BaseW
lshpkrlem.a +˙=+W
lshpkrlem.n N=LSpanW
lshpkrlem.p ˙=LSSumW
lshpkrlem.h H=LSHypW
lshpkrlem.w φWLVec
lshpkrlem.u φUH
lshpkrlem.z φZV
lshpkrlem.x φXV
lshpkrlem.e φU˙NZ=V
lshpkrlem.d D=ScalarW
lshpkrlem.k K=BaseD
lshpkrlem.t ·˙=W
lshpkrlem.o 0˙=0D
lshpkrlem.g G=xVιkK|yUx=y+˙k·˙Z
Assertion lshpkrlem4 φlKuVvVrVsVu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=l·˙r+˙s+˙lDGu+DGv·˙Z

Proof

Step Hyp Ref Expression
1 lshpkrlem.v V=BaseW
2 lshpkrlem.a +˙=+W
3 lshpkrlem.n N=LSpanW
4 lshpkrlem.p ˙=LSSumW
5 lshpkrlem.h H=LSHypW
6 lshpkrlem.w φWLVec
7 lshpkrlem.u φUH
8 lshpkrlem.z φZV
9 lshpkrlem.x φXV
10 lshpkrlem.e φU˙NZ=V
11 lshpkrlem.d D=ScalarW
12 lshpkrlem.k K=BaseD
13 lshpkrlem.t ·˙=W
14 lshpkrlem.o 0˙=0D
15 lshpkrlem.g G=xVιkK|yUx=y+˙k·˙Z
16 simp3l φlKuVvVrVsVu=r+˙Gu·˙Zv=s+˙Gv·˙Zu=r+˙Gu·˙Z
17 16 oveq2d φlKuVvVrVsVu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u=l·˙r+˙Gu·˙Z
18 simp3r φlKuVvVrVsVu=r+˙Gu·˙Zv=s+˙Gv·˙Zv=s+˙Gv·˙Z
19 17 18 oveq12d φlKuVvVrVsVu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=l·˙r+˙Gu·˙Z+˙s+˙Gv·˙Z
20 simpl1 φlKuVvVrVsVφ
21 lveclmod WLVecWLMod
22 20 6 21 3syl φlKuVvVrVsVWLMod
23 simpl2 φlKuVvVrVsVlK
24 simpr2 φlKuVvVrVsVrV
25 simpl3 φlKuVvVrVsVuV
26 6 adantr φuVWLVec
27 7 adantr φuVUH
28 8 adantr φuVZV
29 simpr φuVuV
30 10 adantr φuVU˙NZ=V
31 1 2 3 4 5 26 27 28 29 30 11 12 13 14 15 lshpkrlem2 φuVGuK
32 20 25 31 syl2anc φlKuVvVrVsVGuK
33 20 8 syl φlKuVvVrVsVZV
34 1 11 13 12 lmodvscl WLModGuKZVGu·˙ZV
35 22 32 33 34 syl3anc φlKuVvVrVsVGu·˙ZV
36 1 2 11 13 12 lmodvsdi WLModlKrVGu·˙ZVl·˙r+˙Gu·˙Z=l·˙r+˙l·˙Gu·˙Z
37 22 23 24 35 36 syl13anc φlKuVvVrVsVl·˙r+˙Gu·˙Z=l·˙r+˙l·˙Gu·˙Z
38 eqid D=D
39 1 11 13 12 38 lmodvsass WLModlKGuKZVlDGu·˙Z=l·˙Gu·˙Z
40 22 23 32 33 39 syl13anc φlKuVvVrVsVlDGu·˙Z=l·˙Gu·˙Z
41 40 oveq2d φlKuVvVrVsVl·˙r+˙lDGu·˙Z=l·˙r+˙l·˙Gu·˙Z
42 37 41 eqtr4d φlKuVvVrVsVl·˙r+˙Gu·˙Z=l·˙r+˙lDGu·˙Z
43 42 oveq1d φlKuVvVrVsVl·˙r+˙Gu·˙Z+˙s+˙Gv·˙Z=l·˙r+˙lDGu·˙Z+˙s+˙Gv·˙Z
44 1 11 13 12 lmodvscl WLModlKrVl·˙rV
45 22 23 24 44 syl3anc φlKuVvVrVsVl·˙rV
46 11 12 38 lmodmcl WLModlKGuKlDGuK
47 22 23 32 46 syl3anc φlKuVvVrVsVlDGuK
48 1 11 13 12 lmodvscl WLModlDGuKZVlDGu·˙ZV
49 22 47 33 48 syl3anc φlKuVvVrVsVlDGu·˙ZV
50 simpr3 φlKuVvVrVsVsV
51 simpr1 φlKuVvVrVsVvV
52 6 adantr φvVWLVec
53 7 adantr φvVUH
54 8 adantr φvVZV
55 simpr φvVvV
56 10 adantr φvVU˙NZ=V
57 1 2 3 4 5 52 53 54 55 56 11 12 13 14 15 lshpkrlem2 φvVGvK
58 20 51 57 syl2anc φlKuVvVrVsVGvK
59 1 11 13 12 lmodvscl WLModGvKZVGv·˙ZV
60 22 58 33 59 syl3anc φlKuVvVrVsVGv·˙ZV
61 1 2 lmod4 WLModl·˙rVlDGu·˙ZVsVGv·˙ZVl·˙r+˙lDGu·˙Z+˙s+˙Gv·˙Z=l·˙r+˙s+˙lDGu·˙Z+˙Gv·˙Z
62 22 45 49 50 60 61 syl122anc φlKuVvVrVsVl·˙r+˙lDGu·˙Z+˙s+˙Gv·˙Z=l·˙r+˙s+˙lDGu·˙Z+˙Gv·˙Z
63 eqid +D=+D
64 1 2 11 13 12 63 lmodvsdir WLModlDGuKGvKZVlDGu+DGv·˙Z=lDGu·˙Z+˙Gv·˙Z
65 22 47 58 33 64 syl13anc φlKuVvVrVsVlDGu+DGv·˙Z=lDGu·˙Z+˙Gv·˙Z
66 65 oveq2d φlKuVvVrVsVl·˙r+˙s+˙lDGu+DGv·˙Z=l·˙r+˙s+˙lDGu·˙Z+˙Gv·˙Z
67 62 66 eqtr4d φlKuVvVrVsVl·˙r+˙lDGu·˙Z+˙s+˙Gv·˙Z=l·˙r+˙s+˙lDGu+DGv·˙Z
68 43 67 eqtrd φlKuVvVrVsVl·˙r+˙Gu·˙Z+˙s+˙Gv·˙Z=l·˙r+˙s+˙lDGu+DGv·˙Z
69 68 3adant3 φlKuVvVrVsVu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙r+˙Gu·˙Z+˙s+˙Gv·˙Z=l·˙r+˙s+˙lDGu+DGv·˙Z
70 19 69 eqtrd φlKuVvVrVsVu=r+˙Gu·˙Zv=s+˙Gv·˙Zl·˙u+˙v=l·˙r+˙s+˙lDGu+DGv·˙Z