Metamath Proof Explorer


Theorem lspabs3

Description: Absorption law for span of vector sum. (Contributed by NM, 30-Apr-2015)

Ref Expression
Hypotheses lspabs2.v V=BaseW
lspabs2.p +˙=+W
lspabs2.o 0˙=0W
lspabs2.n N=LSpanW
lspabs2.w φWLVec
lspabs2.x φXV
lspabs3.y φYV
lspabs3.xy φX+˙Y0˙
lspabs3.e φNX=NY
Assertion lspabs3 φNX=NX+˙Y

Proof

Step Hyp Ref Expression
1 lspabs2.v V=BaseW
2 lspabs2.p +˙=+W
3 lspabs2.o 0˙=0W
4 lspabs2.n N=LSpanW
5 lspabs2.w φWLVec
6 lspabs2.x φXV
7 lspabs3.y φYV
8 lspabs3.xy φX+˙Y0˙
9 lspabs3.e φNX=NY
10 eqid LSubSpW=LSubSpW
11 lveclmod WLVecWLMod
12 5 11 syl φWLMod
13 1 10 4 lspsncl WLModXVNXLSubSpW
14 12 6 13 syl2anc φNXLSubSpW
15 1 10 4 lspsncl WLModYVNYLSubSpW
16 12 7 15 syl2anc φNYLSubSpW
17 eqid LSSumW=LSSumW
18 10 17 lsmcl WLModNXLSubSpWNYLSubSpWNXLSSumWNYLSubSpW
19 12 14 16 18 syl3anc φNXLSSumWNYLSubSpW
20 1 4 lspsnsubg WLModXVNXSubGrpW
21 12 6 20 syl2anc φNXSubGrpW
22 9 21 eqeltrrd φNYSubGrpW
23 1 4 lspsnid WLModXVXNX
24 12 6 23 syl2anc φXNX
25 1 4 lspsnid WLModYVYNY
26 12 7 25 syl2anc φYNY
27 2 17 lsmelvali NXSubGrpWNYSubGrpWXNXYNYX+˙YNXLSSumWNY
28 21 22 24 26 27 syl22anc φX+˙YNXLSSumWNY
29 10 4 12 19 28 lspsnel5a φNX+˙YNXLSSumWNY
30 9 oveq2d φNXLSSumWNX=NXLSSumWNY
31 17 lsmidm NXSubGrpWNXLSSumWNX=NX
32 21 31 syl φNXLSSumWNX=NX
33 30 32 eqtr3d φNXLSSumWNY=NX
34 29 33 sseqtrd φNX+˙YNX
35 1 2 lmodvacl WLModXVYVX+˙YV
36 12 6 7 35 syl3anc φX+˙YV
37 eldifsn X+˙YV0˙X+˙YVX+˙Y0˙
38 36 8 37 sylanbrc φX+˙YV0˙
39 1 3 4 5 38 6 lspsncmp φNX+˙YNXNX+˙Y=NX
40 34 39 mpbid φNX+˙Y=NX
41 40 eqcomd φNX=NX+˙Y