Metamath Proof Explorer


Theorem lssdimle

Description: The dimension of a linear subspace is less than or equal to the dimension of the parent vector space. This is corollary 5.4 of Lang p. 141. (Contributed by Thierry Arnoux, 20-May-2023)

Ref Expression
Hypothesis lssdimle.x X=W𝑠U
Assertion lssdimle WLVecULSubSpWdimXdimW

Proof

Step Hyp Ref Expression
1 lssdimle.x X=W𝑠U
2 eqid LSubSpW=LSubSpW
3 1 2 lsslvec WLVecULSubSpWXLVec
4 eqid LBasisX=LBasisX
5 4 lbsex XLVecLBasisX
6 3 5 syl WLVecULSubSpWLBasisX
7 n0 LBasisXxxLBasisX
8 6 7 sylib WLVecULSubSpWxxLBasisX
9 hashss wLBasisWxwxw
10 9 adantll WLVecULSubSpWxLBasisXwLBasisWxwxw
11 4 dimval XLVecxLBasisXdimX=x
12 3 11 sylan WLVecULSubSpWxLBasisXdimX=x
13 12 ad2antrr WLVecULSubSpWxLBasisXwLBasisWxwdimX=x
14 eqid LBasisW=LBasisW
15 14 dimval WLVecwLBasisWdimW=w
16 15 ad5ant14 WLVecULSubSpWxLBasisXwLBasisWxwdimW=w
17 10 13 16 3brtr4d WLVecULSubSpWxLBasisXwLBasisWxwdimXdimW
18 simpll WLVecULSubSpWxLBasisXWLVec
19 lveclmod WLVecWLMod
20 19 ad2antrr WLVecULSubSpWxLBasisXWLMod
21 simplr WLVecULSubSpWxLBasisXULSubSpW
22 simpr WLVecULSubSpWxLBasisXxLBasisX
23 eqid BaseX=BaseX
24 23 4 lbsss xLBasisXxBaseX
25 22 24 syl WLVecULSubSpWxLBasisXxBaseX
26 eqid BaseW=BaseW
27 26 2 lssss ULSubSpWUBaseW
28 1 26 ressbas2 UBaseWU=BaseX
29 21 27 28 3syl WLVecULSubSpWxLBasisXU=BaseX
30 25 29 sseqtrrd WLVecULSubSpWxLBasisXxU
31 4 lbslinds LBasisXLIndSX
32 31 22 sselid WLVecULSubSpWxLBasisXxLIndSX
33 2 1 lsslinds WLModULSubSpWxUxLIndSXxLIndSW
34 33 biimpa WLModULSubSpWxUxLIndSXxLIndSW
35 20 21 30 32 34 syl31anc WLVecULSubSpWxLBasisXxLIndSW
36 14 islinds4 WLVecxLIndSWwLBasisWxw
37 36 biimpa WLVecxLIndSWwLBasisWxw
38 18 35 37 syl2anc WLVecULSubSpWxLBasisXwLBasisWxw
39 17 38 r19.29a WLVecULSubSpWxLBasisXdimXdimW
40 8 39 exlimddv WLVecULSubSpWdimXdimW