| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recn |  | 
						
							| 2 |  | recn |  | 
						
							| 3 |  | mulcom |  | 
						
							| 4 | 1 2 3 | syl2an |  | 
						
							| 5 | 4 | oveq1d |  | 
						
							| 6 | 5 | adantl |  | 
						
							| 7 | 2 | ad2antll |  | 
						
							| 8 | 1 | ad2antrl |  | 
						
							| 9 |  | recn |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 |  | gt0ne0 |  | 
						
							| 12 | 10 11 | jca |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 |  | divass |  | 
						
							| 15 | 7 8 13 14 | syl3anc |  | 
						
							| 16 | 6 15 | eqtrd |  | 
						
							| 17 | 16 | adantrrr |  | 
						
							| 18 | 17 | adantll |  | 
						
							| 19 | 18 | breq2d |  | 
						
							| 20 |  | simpll |  | 
						
							| 21 |  | remulcl |  | 
						
							| 22 | 21 | adantrr |  | 
						
							| 23 | 22 | adantl |  | 
						
							| 24 |  | simplr |  | 
						
							| 25 |  | ltmuldiv |  | 
						
							| 26 | 20 23 24 25 | syl3anc |  | 
						
							| 27 |  | simpl |  | 
						
							| 28 | 27 11 | jca |  | 
						
							| 29 |  | redivcl |  | 
						
							| 30 | 29 | 3expb |  | 
						
							| 31 | 28 30 | sylan2 |  | 
						
							| 32 | 31 | ancoms |  | 
						
							| 33 | 32 | ad2ant2lr |  | 
						
							| 34 |  | simprr |  | 
						
							| 35 |  | ltdivmul |  | 
						
							| 36 | 20 33 34 35 | syl3anc |  | 
						
							| 37 | 19 26 36 | 3bitr4d |  |