Metamath Proof Explorer


Theorem lt2mul2div

Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 8-Jan-2006)

Ref Expression
Assertion lt2mul2div AB0<BCD0<DAB<CDAD<CB

Proof

Step Hyp Ref Expression
1 recn CC
2 recn DD
3 mulcom CDCD=DC
4 1 2 3 syl2an CDCD=DC
5 4 oveq1d CDCDB=DCB
6 5 adantl B0<BCDCDB=DCB
7 2 ad2antll B0<BCDD
8 1 ad2antrl B0<BCDC
9 recn BB
10 9 adantr B0<BB
11 gt0ne0 B0<BB0
12 10 11 jca B0<BBB0
13 12 adantr B0<BCDBB0
14 divass DCBB0DCB=DCB
15 7 8 13 14 syl3anc B0<BCDDCB=DCB
16 6 15 eqtrd B0<BCDCDB=DCB
17 16 adantrrr B0<BCD0<DCDB=DCB
18 17 adantll AB0<BCD0<DCDB=DCB
19 18 breq2d AB0<BCD0<DA<CDBA<DCB
20 simpll AB0<BCD0<DA
21 remulcl CDCD
22 21 adantrr CD0<DCD
23 22 adantl AB0<BCD0<DCD
24 simplr AB0<BCD0<DB0<B
25 ltmuldiv ACDB0<BAB<CDA<CDB
26 20 23 24 25 syl3anc AB0<BCD0<DAB<CDA<CDB
27 simpl B0<BB
28 27 11 jca B0<BBB0
29 redivcl CBB0CB
30 29 3expb CBB0CB
31 28 30 sylan2 CB0<BCB
32 31 ancoms B0<BCCB
33 32 ad2ant2lr AB0<BCD0<DCB
34 simprr AB0<BCD0<DD0<D
35 ltdivmul ACBD0<DAD<CBA<DCB
36 20 33 34 35 syl3anc AB0<BCD0<DAD<CBA<DCB
37 19 26 36 3bitr4d AB0<BCD0<DAB<CDAD<CB