Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 8-Jan-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | lt2mul2div | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn | |
|
2 | recn | |
|
3 | mulcom | |
|
4 | 1 2 3 | syl2an | |
5 | 4 | oveq1d | |
6 | 5 | adantl | |
7 | 2 | ad2antll | |
8 | 1 | ad2antrl | |
9 | recn | |
|
10 | 9 | adantr | |
11 | gt0ne0 | |
|
12 | 10 11 | jca | |
13 | 12 | adantr | |
14 | divass | |
|
15 | 7 8 13 14 | syl3anc | |
16 | 6 15 | eqtrd | |
17 | 16 | adantrrr | |
18 | 17 | adantll | |
19 | 18 | breq2d | |
20 | simpll | |
|
21 | remulcl | |
|
22 | 21 | adantrr | |
23 | 22 | adantl | |
24 | simplr | |
|
25 | ltmuldiv | |
|
26 | 20 23 24 25 | syl3anc | |
27 | simpl | |
|
28 | 27 11 | jca | |
29 | redivcl | |
|
30 | 29 | 3expb | |
31 | 28 30 | sylan2 | |
32 | 31 | ancoms | |
33 | 32 | ad2ant2lr | |
34 | simprr | |
|
35 | ltdivmul | |
|
36 | 20 33 34 35 | syl3anc | |
37 | 19 26 36 | 3bitr4d | |