Metamath Proof Explorer


Theorem ltdiv23

Description: Swap denominator with other side of 'less than'. (Contributed by NM, 3-Oct-1999)

Ref Expression
Assertion ltdiv23 AB0<BC0<CAB<CAC<B

Proof

Step Hyp Ref Expression
1 simpl B0<BB
2 gt0ne0 B0<BB0
3 1 2 jca B0<BBB0
4 redivcl ABB0AB
5 4 3expb ABB0AB
6 3 5 sylan2 AB0<BAB
7 6 3adant3 AB0<BCAB
8 simp3 AB0<BCC
9 simp2 AB0<BCB0<B
10 ltmul1 ABCB0<BAB<CABB<CB
11 7 8 9 10 syl3anc AB0<BCAB<CABB<CB
12 11 3adant3r AB0<BC0<CAB<CABB<CB
13 recn AA
14 13 adantr AB0<BA
15 recn BB
16 15 ad2antrl AB0<BB
17 2 adantl AB0<BB0
18 14 16 17 divcan1d AB0<BABB=A
19 18 3adant3 AB0<BC0<CABB=A
20 19 breq1d AB0<BC0<CABB<CBA<CB
21 remulcl CBCB
22 21 ancoms BCCB
23 22 adantrr BC0<CCB
24 23 3adant1 ABC0<CCB
25 ltdiv1 ACBC0<CA<CBAC<CBC
26 24 25 syld3an2 ABC0<CA<CBAC<CBC
27 recn CC
28 27 adantr C0<CC
29 gt0ne0 C0<CC0
30 28 29 jca C0<CCC0
31 divcan3 BCC0CBC=B
32 31 3expb BCC0CBC=B
33 15 30 32 syl2an BC0<CCBC=B
34 33 3adant1 ABC0<CCBC=B
35 34 breq2d ABC0<CAC<CBCAC<B
36 26 35 bitrd ABC0<CA<CBAC<B
37 36 3adant2r AB0<BC0<CA<CBAC<B
38 12 20 37 3bitrd AB0<BC0<CAB<CAC<B