Metamath Proof Explorer


Theorem lterpq

Description: Compatibility of ordering on equivalent fractions. (Contributed by Mario Carneiro, 9-May-2013) (New usage is discouraged.)

Ref Expression
Assertion lterpq A<𝑝𝑸B/𝑸A<𝑸/𝑸B

Proof

Step Hyp Ref Expression
1 df-ltpq <𝑝𝑸=xy|x𝑵×𝑵y𝑵×𝑵1stx𝑵2ndy<𝑵1sty𝑵2ndx
2 opabssxp xy|x𝑵×𝑵y𝑵×𝑵1stx𝑵2ndy<𝑵1sty𝑵2ndx𝑵×𝑵×𝑵×𝑵
3 1 2 eqsstri <𝑝𝑸𝑵×𝑵×𝑵×𝑵
4 3 brel A<𝑝𝑸BA𝑵×𝑵B𝑵×𝑵
5 ltrelnq <𝑸𝑸×𝑸
6 5 brel /𝑸A<𝑸/𝑸B/𝑸A𝑸/𝑸B𝑸
7 elpqn /𝑸A𝑸/𝑸A𝑵×𝑵
8 elpqn /𝑸B𝑸/𝑸B𝑵×𝑵
9 nqerf /𝑸:𝑵×𝑵𝑸
10 9 fdmi dom/𝑸=𝑵×𝑵
11 0nelxp ¬𝑵×𝑵
12 10 11 ndmfvrcl /𝑸A𝑵×𝑵A𝑵×𝑵
13 10 11 ndmfvrcl /𝑸B𝑵×𝑵B𝑵×𝑵
14 12 13 anim12i /𝑸A𝑵×𝑵/𝑸B𝑵×𝑵A𝑵×𝑵B𝑵×𝑵
15 7 8 14 syl2an /𝑸A𝑸/𝑸B𝑸A𝑵×𝑵B𝑵×𝑵
16 6 15 syl /𝑸A<𝑸/𝑸BA𝑵×𝑵B𝑵×𝑵
17 xp1st A𝑵×𝑵1stA𝑵
18 xp2nd B𝑵×𝑵2ndB𝑵
19 mulclpi 1stA𝑵2ndB𝑵1stA𝑵2ndB𝑵
20 17 18 19 syl2an A𝑵×𝑵B𝑵×𝑵1stA𝑵2ndB𝑵
21 ltmpi 1stA𝑵2ndB𝑵1st/𝑸A𝑵2nd/𝑸B<𝑵1st/𝑸B𝑵2nd/𝑸A1stA𝑵2ndB𝑵1st/𝑸A𝑵2nd/𝑸B<𝑵1stA𝑵2ndB𝑵1st/𝑸B𝑵2nd/𝑸A
22 20 21 syl A𝑵×𝑵B𝑵×𝑵1st/𝑸A𝑵2nd/𝑸B<𝑵1st/𝑸B𝑵2nd/𝑸A1stA𝑵2ndB𝑵1st/𝑸A𝑵2nd/𝑸B<𝑵1stA𝑵2ndB𝑵1st/𝑸B𝑵2nd/𝑸A
23 nqercl A𝑵×𝑵/𝑸A𝑸
24 nqercl B𝑵×𝑵/𝑸B𝑸
25 ordpinq /𝑸A𝑸/𝑸B𝑸/𝑸A<𝑸/𝑸B1st/𝑸A𝑵2nd/𝑸B<𝑵1st/𝑸B𝑵2nd/𝑸A
26 23 24 25 syl2an A𝑵×𝑵B𝑵×𝑵/𝑸A<𝑸/𝑸B1st/𝑸A𝑵2nd/𝑸B<𝑵1st/𝑸B𝑵2nd/𝑸A
27 1st2nd2 A𝑵×𝑵A=1stA2ndA
28 1st2nd2 B𝑵×𝑵B=1stB2ndB
29 27 28 breqan12d A𝑵×𝑵B𝑵×𝑵A<𝑝𝑸B1stA2ndA<𝑝𝑸1stB2ndB
30 ordpipq 1stA2ndA<𝑝𝑸1stB2ndB1stA𝑵2ndB<𝑵1stB𝑵2ndA
31 29 30 bitrdi A𝑵×𝑵B𝑵×𝑵A<𝑝𝑸B1stA𝑵2ndB<𝑵1stB𝑵2ndA
32 xp1st /𝑸A𝑵×𝑵1st/𝑸A𝑵
33 23 7 32 3syl A𝑵×𝑵1st/𝑸A𝑵
34 xp2nd /𝑸B𝑵×𝑵2nd/𝑸B𝑵
35 24 8 34 3syl B𝑵×𝑵2nd/𝑸B𝑵
36 mulclpi 1st/𝑸A𝑵2nd/𝑸B𝑵1st/𝑸A𝑵2nd/𝑸B𝑵
37 33 35 36 syl2an A𝑵×𝑵B𝑵×𝑵1st/𝑸A𝑵2nd/𝑸B𝑵
38 ltmpi 1st/𝑸A𝑵2nd/𝑸B𝑵1stA𝑵2ndB<𝑵1stB𝑵2ndA1st/𝑸A𝑵2nd/𝑸B𝑵1stA𝑵2ndB<𝑵1st/𝑸A𝑵2nd/𝑸B𝑵1stB𝑵2ndA
39 37 38 syl A𝑵×𝑵B𝑵×𝑵1stA𝑵2ndB<𝑵1stB𝑵2ndA1st/𝑸A𝑵2nd/𝑸B𝑵1stA𝑵2ndB<𝑵1st/𝑸A𝑵2nd/𝑸B𝑵1stB𝑵2ndA
40 mulcompi 1st/𝑸A𝑵2nd/𝑸B𝑵1stA𝑵2ndB=1stA𝑵2ndB𝑵1st/𝑸A𝑵2nd/𝑸B
41 40 a1i A𝑵×𝑵B𝑵×𝑵1st/𝑸A𝑵2nd/𝑸B𝑵1stA𝑵2ndB=1stA𝑵2ndB𝑵1st/𝑸A𝑵2nd/𝑸B
42 nqerrel A𝑵×𝑵A~𝑸/𝑸A
43 23 7 syl A𝑵×𝑵/𝑸A𝑵×𝑵
44 enqbreq2 A𝑵×𝑵/𝑸A𝑵×𝑵A~𝑸/𝑸A1stA𝑵2nd/𝑸A=1st/𝑸A𝑵2ndA
45 43 44 mpdan A𝑵×𝑵A~𝑸/𝑸A1stA𝑵2nd/𝑸A=1st/𝑸A𝑵2ndA
46 42 45 mpbid A𝑵×𝑵1stA𝑵2nd/𝑸A=1st/𝑸A𝑵2ndA
47 46 eqcomd A𝑵×𝑵1st/𝑸A𝑵2ndA=1stA𝑵2nd/𝑸A
48 nqerrel B𝑵×𝑵B~𝑸/𝑸B
49 24 8 syl B𝑵×𝑵/𝑸B𝑵×𝑵
50 enqbreq2 B𝑵×𝑵/𝑸B𝑵×𝑵B~𝑸/𝑸B1stB𝑵2nd/𝑸B=1st/𝑸B𝑵2ndB
51 49 50 mpdan B𝑵×𝑵B~𝑸/𝑸B1stB𝑵2nd/𝑸B=1st/𝑸B𝑵2ndB
52 48 51 mpbid B𝑵×𝑵1stB𝑵2nd/𝑸B=1st/𝑸B𝑵2ndB
53 47 52 oveqan12d A𝑵×𝑵B𝑵×𝑵1st/𝑸A𝑵2ndA𝑵1stB𝑵2nd/𝑸B=1stA𝑵2nd/𝑸A𝑵1st/𝑸B𝑵2ndB
54 mulcompi 1st/𝑸A𝑵2nd/𝑸B𝑵1stB𝑵2ndA=1stB𝑵2ndA𝑵1st/𝑸A𝑵2nd/𝑸B
55 fvex 1stBV
56 fvex 2ndAV
57 fvex 1st/𝑸AV
58 mulcompi x𝑵y=y𝑵x
59 mulasspi x𝑵y𝑵z=x𝑵y𝑵z
60 fvex 2nd/𝑸BV
61 55 56 57 58 59 60 caov411 1stB𝑵2ndA𝑵1st/𝑸A𝑵2nd/𝑸B=1st/𝑸A𝑵2ndA𝑵1stB𝑵2nd/𝑸B
62 54 61 eqtri 1st/𝑸A𝑵2nd/𝑸B𝑵1stB𝑵2ndA=1st/𝑸A𝑵2ndA𝑵1stB𝑵2nd/𝑸B
63 mulcompi 1stA𝑵2ndB𝑵1st/𝑸B𝑵2nd/𝑸A=1st/𝑸B𝑵2nd/𝑸A𝑵1stA𝑵2ndB
64 fvex 1st/𝑸BV
65 fvex 2nd/𝑸AV
66 fvex 1stAV
67 fvex 2ndBV
68 64 65 66 58 59 67 caov411 1st/𝑸B𝑵2nd/𝑸A𝑵1stA𝑵2ndB=1stA𝑵2nd/𝑸A𝑵1st/𝑸B𝑵2ndB
69 63 68 eqtri 1stA𝑵2ndB𝑵1st/𝑸B𝑵2nd/𝑸A=1stA𝑵2nd/𝑸A𝑵1st/𝑸B𝑵2ndB
70 53 62 69 3eqtr4g A𝑵×𝑵B𝑵×𝑵1st/𝑸A𝑵2nd/𝑸B𝑵1stB𝑵2ndA=1stA𝑵2ndB𝑵1st/𝑸B𝑵2nd/𝑸A
71 41 70 breq12d A𝑵×𝑵B𝑵×𝑵1st/𝑸A𝑵2nd/𝑸B𝑵1stA𝑵2ndB<𝑵1st/𝑸A𝑵2nd/𝑸B𝑵1stB𝑵2ndA1stA𝑵2ndB𝑵1st/𝑸A𝑵2nd/𝑸B<𝑵1stA𝑵2ndB𝑵1st/𝑸B𝑵2nd/𝑸A
72 31 39 71 3bitrd A𝑵×𝑵B𝑵×𝑵A<𝑝𝑸B1stA𝑵2ndB𝑵1st/𝑸A𝑵2nd/𝑸B<𝑵1stA𝑵2ndB𝑵1st/𝑸B𝑵2nd/𝑸A
73 22 26 72 3bitr4rd A𝑵×𝑵B𝑵×𝑵A<𝑝𝑸B/𝑸A<𝑸/𝑸B
74 4 16 73 pm5.21nii A<𝑝𝑸B/𝑸A<𝑸/𝑸B