Metamath Proof Explorer


Theorem m1mod0mod1

Description: An integer decreased by 1 is 0 modulo a positive integer iff the integer is 1 modulo the same modulus. (Contributed by AV, 6-Jun-2020)

Ref Expression
Assertion m1mod0mod1 AN1<NA1modN=0AmodN=1

Proof

Step Hyp Ref Expression
1 recn AA
2 npcan1 AA-1+1=A
3 2 eqcomd AA=A-1+1
4 1 3 syl AA=A-1+1
5 4 3ad2ant1 AN1<NA=A-1+1
6 5 adantr AN1<NA1modN=0A=A-1+1
7 6 oveq1d AN1<NA1modN=0AmodN=A-1+1modN
8 simpr AN1<NA1modN=0A1modN=0
9 1mod N1<N1modN=1
10 9 3adant1 AN1<N1modN=1
11 10 adantr AN1<NA1modN=01modN=1
12 8 11 oveq12d AN1<NA1modN=0A1modN+1modN=0+1
13 12 oveq1d AN1<NA1modN=0A1modN+1modNmodN=0+1modN
14 peano2rem AA1
15 14 3ad2ant1 AN1<NA1
16 1red AN1<N1
17 simpl N1<NN
18 0lt1 0<1
19 0re 0
20 1re 1
21 lttr 01N0<11<N0<N
22 19 20 21 mp3an12 N0<11<N0<N
23 18 22 mpani N1<N0<N
24 23 imp N1<N0<N
25 17 24 elrpd N1<NN+
26 25 3adant1 AN1<NN+
27 15 16 26 3jca AN1<NA11N+
28 27 adantr AN1<NA1modN=0A11N+
29 modaddabs A11N+A1modN+1modNmodN=A-1+1modN
30 28 29 syl AN1<NA1modN=0A1modN+1modNmodN=A-1+1modN
31 0p1e1 0+1=1
32 31 oveq1i 0+1modN=1modN
33 32 9 eqtrid N1<N0+1modN=1
34 33 3adant1 AN1<N0+1modN=1
35 34 adantr AN1<NA1modN=00+1modN=1
36 13 30 35 3eqtr3d AN1<NA1modN=0A-1+1modN=1
37 7 36 eqtrd AN1<NA1modN=0AmodN=1
38 simpr AN1<NAmodN=1AmodN=1
39 38 eqcomd AN1<NAmodN=11=AmodN
40 39 oveq2d AN1<NAmodN=1A1=AAmodN
41 40 oveq1d AN1<NAmodN=1A1modN=AAmodNmodN
42 simp1 AN1<NA
43 42 26 modcld AN1<NAmodN
44 43 recnd AN1<NAmodN
45 44 subidd AN1<NAmodNAmodN=0
46 45 oveq1d AN1<NAmodNAmodNmodN=0modN
47 modsubmod AAmodNN+AmodNAmodNmodN=AAmodNmodN
48 42 43 26 47 syl3anc AN1<NAmodNAmodNmodN=AAmodNmodN
49 0mod N+0modN=0
50 26 49 syl AN1<N0modN=0
51 46 48 50 3eqtr3d AN1<NAAmodNmodN=0
52 51 adantr AN1<NAmodN=1AAmodNmodN=0
53 41 52 eqtrd AN1<NAmodN=1A1modN=0
54 37 53 impbida AN1<NA1modN=0AmodN=1