Description: An integer decreased by 1 is 0 modulo a positive integer iff the integer is 1 modulo the same modulus. (Contributed by AV, 6-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | m1mod0mod1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn | |
|
2 | npcan1 | |
|
3 | 2 | eqcomd | |
4 | 1 3 | syl | |
5 | 4 | 3ad2ant1 | |
6 | 5 | adantr | |
7 | 6 | oveq1d | |
8 | simpr | |
|
9 | 1mod | |
|
10 | 9 | 3adant1 | |
11 | 10 | adantr | |
12 | 8 11 | oveq12d | |
13 | 12 | oveq1d | |
14 | peano2rem | |
|
15 | 14 | 3ad2ant1 | |
16 | 1red | |
|
17 | simpl | |
|
18 | 0lt1 | |
|
19 | 0re | |
|
20 | 1re | |
|
21 | lttr | |
|
22 | 19 20 21 | mp3an12 | |
23 | 18 22 | mpani | |
24 | 23 | imp | |
25 | 17 24 | elrpd | |
26 | 25 | 3adant1 | |
27 | 15 16 26 | 3jca | |
28 | 27 | adantr | |
29 | modaddabs | |
|
30 | 28 29 | syl | |
31 | 0p1e1 | |
|
32 | 31 | oveq1i | |
33 | 32 9 | eqtrid | |
34 | 33 | 3adant1 | |
35 | 34 | adantr | |
36 | 13 30 35 | 3eqtr3d | |
37 | 7 36 | eqtrd | |
38 | simpr | |
|
39 | 38 | eqcomd | |
40 | 39 | oveq2d | |
41 | 40 | oveq1d | |
42 | simp1 | |
|
43 | 42 26 | modcld | |
44 | 43 | recnd | |
45 | 44 | subidd | |
46 | 45 | oveq1d | |
47 | modsubmod | |
|
48 | 42 43 26 47 | syl3anc | |
49 | 0mod | |
|
50 | 26 49 | syl | |
51 | 46 48 50 | 3eqtr3d | |
52 | 51 | adantr | |
53 | 41 52 | eqtrd | |
54 | 37 53 | impbida | |