| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recn |
|
| 2 |
|
npcan1 |
|
| 3 |
2
|
eqcomd |
|
| 4 |
1 3
|
syl |
|
| 5 |
4
|
3ad2ant1 |
|
| 6 |
5
|
adantr |
|
| 7 |
6
|
oveq1d |
|
| 8 |
|
simpr |
|
| 9 |
|
1mod |
|
| 10 |
9
|
3adant1 |
|
| 11 |
10
|
adantr |
|
| 12 |
8 11
|
oveq12d |
|
| 13 |
12
|
oveq1d |
|
| 14 |
|
peano2rem |
|
| 15 |
14
|
3ad2ant1 |
|
| 16 |
|
1red |
|
| 17 |
|
simpl |
|
| 18 |
|
0lt1 |
|
| 19 |
|
0re |
|
| 20 |
|
1re |
|
| 21 |
|
lttr |
|
| 22 |
19 20 21
|
mp3an12 |
|
| 23 |
18 22
|
mpani |
|
| 24 |
23
|
imp |
|
| 25 |
17 24
|
elrpd |
|
| 26 |
25
|
3adant1 |
|
| 27 |
15 16 26
|
3jca |
|
| 28 |
27
|
adantr |
|
| 29 |
|
modaddabs |
|
| 30 |
28 29
|
syl |
|
| 31 |
|
0p1e1 |
|
| 32 |
31
|
oveq1i |
|
| 33 |
32 9
|
eqtrid |
|
| 34 |
33
|
3adant1 |
|
| 35 |
34
|
adantr |
|
| 36 |
13 30 35
|
3eqtr3d |
|
| 37 |
7 36
|
eqtrd |
|
| 38 |
|
simpr |
|
| 39 |
38
|
eqcomd |
|
| 40 |
39
|
oveq2d |
|
| 41 |
40
|
oveq1d |
|
| 42 |
|
simp1 |
|
| 43 |
42 26
|
modcld |
|
| 44 |
43
|
recnd |
|
| 45 |
44
|
subidd |
|
| 46 |
45
|
oveq1d |
|
| 47 |
|
modsubmod |
|
| 48 |
42 43 26 47
|
syl3anc |
|
| 49 |
|
0mod |
|
| 50 |
26 49
|
syl |
|
| 51 |
46 48 50
|
3eqtr3d |
|
| 52 |
51
|
adantr |
|
| 53 |
41 52
|
eqtrd |
|
| 54 |
37 53
|
impbida |
|