Metamath Proof Explorer


Theorem mapdindp0

Description: Vector independence lemma. (Contributed by NM, 29-Apr-2015)

Ref Expression
Hypotheses mapdindp1.v V=BaseW
mapdindp1.p +˙=+W
mapdindp1.o 0˙=0W
mapdindp1.n N=LSpanW
mapdindp1.w φWLVec
mapdindp1.x φXV0˙
mapdindp1.y φYV0˙
mapdindp1.z φZV0˙
mapdindp1.W φwV0˙
mapdindp1.e φNY=NZ
mapdindp1.ne φNXNY
mapdindp1.f φ¬wNXY
mapdindp1.yz φY+˙Z0˙
Assertion mapdindp0 φNY+˙Z=NY

Proof

Step Hyp Ref Expression
1 mapdindp1.v V=BaseW
2 mapdindp1.p +˙=+W
3 mapdindp1.o 0˙=0W
4 mapdindp1.n N=LSpanW
5 mapdindp1.w φWLVec
6 mapdindp1.x φXV0˙
7 mapdindp1.y φYV0˙
8 mapdindp1.z φZV0˙
9 mapdindp1.W φwV0˙
10 mapdindp1.e φNY=NZ
11 mapdindp1.ne φNXNY
12 mapdindp1.f φ¬wNXY
13 mapdindp1.yz φY+˙Z0˙
14 eqid LSubSpW=LSubSpW
15 lveclmod WLVecWLMod
16 5 15 syl φWLMod
17 7 eldifad φYV
18 1 14 4 lspsncl WLModYVNYLSubSpW
19 16 17 18 syl2anc φNYLSubSpW
20 10 19 eqeltrrd φNZLSubSpW
21 eqid LSSumW=LSSumW
22 14 21 lsmcl WLModNYLSubSpWNZLSubSpWNYLSSumWNZLSubSpW
23 16 19 20 22 syl3anc φNYLSSumWNZLSubSpW
24 14 lsssssubg WLModLSubSpWSubGrpW
25 16 24 syl φLSubSpWSubGrpW
26 25 19 sseldd φNYSubGrpW
27 10 26 eqeltrrd φNZSubGrpW
28 1 4 lspsnid WLModYVYNY
29 16 17 28 syl2anc φYNY
30 8 eldifad φZV
31 1 4 lspsnid WLModZVZNZ
32 16 30 31 syl2anc φZNZ
33 2 21 lsmelvali NYSubGrpWNZSubGrpWYNYZNZY+˙ZNYLSSumWNZ
34 26 27 29 32 33 syl22anc φY+˙ZNYLSSumWNZ
35 14 4 16 23 34 lspsnel5a φNY+˙ZNYLSSumWNZ
36 10 oveq2d φNYLSSumWNY=NYLSSumWNZ
37 21 lsmidm NYSubGrpWNYLSSumWNY=NY
38 26 37 syl φNYLSSumWNY=NY
39 36 38 eqtr3d φNYLSSumWNZ=NY
40 35 39 sseqtrd φNY+˙ZNY
41 1 2 lmodvacl WLModYVZVY+˙ZV
42 16 17 30 41 syl3anc φY+˙ZV
43 eldifsn Y+˙ZV0˙Y+˙ZVY+˙Z0˙
44 42 13 43 sylanbrc φY+˙ZV0˙
45 1 3 4 5 44 17 lspsncmp φNY+˙ZNYNY+˙Z=NY
46 40 45 mpbid φNY+˙Z=NY