Metamath Proof Explorer


Theorem mat1dimscm

Description: The scalar multiplication in the algebra of matrices with dimension 1. (Contributed by AV, 16-Aug-2019)

Ref Expression
Hypotheses mat1dim.a A=EMatR
mat1dim.b B=BaseR
mat1dim.o O=EE
Assertion mat1dimscm RRingEVXBYBXAOY=OXRY

Proof

Step Hyp Ref Expression
1 mat1dim.a A=EMatR
2 mat1dim.b B=BaseR
3 mat1dim.o O=EE
4 opex EEV
5 3 4 eqeltri OV
6 5 a1i YBOV
7 6 anim2i XBYBXBOV
8 7 ancomd XBYBOVXB
9 fnsng OVXBOXFnO
10 8 9 syl XBYBOXFnO
11 10 adantl RRingEVXBYBOXFnO
12 xpsng OVXBO×X=OX
13 8 12 syl XBYBO×X=OX
14 13 adantl RRingEVXBYBO×X=OX
15 14 fneq1d RRingEVXBYBO×XFnOOXFnO
16 11 15 mpbird RRingEVXBYBO×XFnO
17 xpsng EVEVE×E=EE
18 3 sneqi O=EE
19 17 18 eqtr4di EVEVE×E=O
20 19 anidms EVE×E=O
21 20 ad2antlr RRingEVXBYBE×E=O
22 21 xpeq1d RRingEVXBYBE×E×X=O×X
23 22 fneq1d RRingEVXBYBE×E×XFnOO×XFnO
24 16 23 mpbird RRingEVXBYBE×E×XFnO
25 5 a1i XBOV
26 fnsng OVYBOYFnO
27 25 26 sylan XBYBOYFnO
28 27 adantl RRingEVXBYBOYFnO
29 snex OV
30 29 a1i RRingEVXBYBOV
31 inidm OO=O
32 elsni xOx=O
33 fveq2 x=OE×E×Xx=E×E×XO
34 17 anidms EVE×E=EE
35 34 ad2antlr RRingEVXBYBE×E=EE
36 35 xpeq1d RRingEVXBYBE×E×X=EE×X
37 4 a1i YBEEV
38 37 anim2i XBYBXBEEV
39 38 ancomd XBYBEEVXB
40 xpsng EEVXBEE×X=EEX
41 3 eqcomi EE=O
42 41 opeq1i EEX=OX
43 42 sneqi EEX=OX
44 40 43 eqtrdi EEVXBEE×X=OX
45 39 44 syl XBYBEE×X=OX
46 45 adantl RRingEVXBYBEE×X=OX
47 36 46 eqtrd RRingEVXBYBE×E×X=OX
48 47 fveq1d RRingEVXBYBE×E×XO=OXO
49 fvsng OVXBOXO=X
50 8 49 syl XBYBOXO=X
51 50 adantl RRingEVXBYBOXO=X
52 48 51 eqtrd RRingEVXBYBE×E×XO=X
53 33 52 sylan9eq x=ORRingEVXBYBE×E×Xx=X
54 53 ex x=ORRingEVXBYBE×E×Xx=X
55 32 54 syl xORRingEVXBYBE×E×Xx=X
56 55 impcom RRingEVXBYBxOE×E×Xx=X
57 fveq2 x=OOYx=OYO
58 fvsng OVYBOYO=Y
59 25 58 sylan XBYBOYO=Y
60 59 adantl RRingEVXBYBOYO=Y
61 57 60 sylan9eq x=ORRingEVXBYBOYx=Y
62 61 ex x=ORRingEVXBYBOYx=Y
63 32 62 syl xORRingEVXBYBOYx=Y
64 63 impcom RRingEVXBYBxOOYx=Y
65 24 28 30 30 31 56 64 offval RRingEVXBYBE×E×XRfOY=xOXRY
66 simprl RRingEVXBYBXB
67 simpr XBYBYB
68 67 anim2i RRingEVXBYBRRingEVYB
69 df-3an RRingEVYBRRingEVYB
70 68 69 sylibr RRingEVXBYBRRingEVYB
71 1 2 3 mat1dimbas RRingEVYBOYBaseA
72 70 71 syl RRingEVXBYBOYBaseA
73 eqid BaseA=BaseA
74 eqid A=A
75 eqid R=R
76 eqid E×E=E×E
77 1 73 2 74 75 76 matvsca2 XBOYBaseAXAOY=E×E×XRfOY
78 66 72 77 syl2anc RRingEVXBYBXAOY=E×E×XRfOY
79 3anass RRingXBYBRRingXBYB
80 79 biimpri RRingXBYBRRingXBYB
81 80 adantlr RRingEVXBYBRRingXBYB
82 2 75 ringcl RRingXBYBXRYB
83 81 82 syl RRingEVXBYBXRYB
84 fmptsn OVXRYBOXRY=xOXRY
85 5 83 84 sylancr RRingEVXBYBOXRY=xOXRY
86 65 78 85 3eqtr4d RRingEVXBYBXAOY=OXRY