| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mat1dim.a |
|
| 2 |
|
mat1dim.b |
|
| 3 |
|
mat1dim.o |
|
| 4 |
|
opex |
|
| 5 |
3 4
|
eqeltri |
|
| 6 |
5
|
a1i |
|
| 7 |
6
|
anim2i |
|
| 8 |
7
|
ancomd |
|
| 9 |
|
fnsng |
|
| 10 |
8 9
|
syl |
|
| 11 |
10
|
adantl |
|
| 12 |
|
xpsng |
|
| 13 |
8 12
|
syl |
|
| 14 |
13
|
adantl |
|
| 15 |
14
|
fneq1d |
|
| 16 |
11 15
|
mpbird |
|
| 17 |
|
xpsng |
|
| 18 |
3
|
sneqi |
|
| 19 |
17 18
|
eqtr4di |
|
| 20 |
19
|
anidms |
|
| 21 |
20
|
ad2antlr |
|
| 22 |
21
|
xpeq1d |
|
| 23 |
22
|
fneq1d |
|
| 24 |
16 23
|
mpbird |
|
| 25 |
5
|
a1i |
|
| 26 |
|
fnsng |
|
| 27 |
25 26
|
sylan |
|
| 28 |
27
|
adantl |
|
| 29 |
|
snex |
|
| 30 |
29
|
a1i |
|
| 31 |
|
inidm |
|
| 32 |
|
elsni |
|
| 33 |
|
fveq2 |
|
| 34 |
17
|
anidms |
|
| 35 |
34
|
ad2antlr |
|
| 36 |
35
|
xpeq1d |
|
| 37 |
4
|
a1i |
|
| 38 |
37
|
anim2i |
|
| 39 |
38
|
ancomd |
|
| 40 |
|
xpsng |
|
| 41 |
3
|
eqcomi |
|
| 42 |
41
|
opeq1i |
|
| 43 |
42
|
sneqi |
|
| 44 |
40 43
|
eqtrdi |
|
| 45 |
39 44
|
syl |
|
| 46 |
45
|
adantl |
|
| 47 |
36 46
|
eqtrd |
|
| 48 |
47
|
fveq1d |
|
| 49 |
|
fvsng |
|
| 50 |
8 49
|
syl |
|
| 51 |
50
|
adantl |
|
| 52 |
48 51
|
eqtrd |
|
| 53 |
33 52
|
sylan9eq |
|
| 54 |
53
|
ex |
|
| 55 |
32 54
|
syl |
|
| 56 |
55
|
impcom |
|
| 57 |
|
fveq2 |
|
| 58 |
|
fvsng |
|
| 59 |
25 58
|
sylan |
|
| 60 |
59
|
adantl |
|
| 61 |
57 60
|
sylan9eq |
|
| 62 |
61
|
ex |
|
| 63 |
32 62
|
syl |
|
| 64 |
63
|
impcom |
|
| 65 |
24 28 30 30 31 56 64
|
offval |
|
| 66 |
|
simprl |
|
| 67 |
|
simpr |
|
| 68 |
67
|
anim2i |
|
| 69 |
|
df-3an |
|
| 70 |
68 69
|
sylibr |
|
| 71 |
1 2 3
|
mat1dimbas |
|
| 72 |
70 71
|
syl |
|
| 73 |
|
eqid |
|
| 74 |
|
eqid |
|
| 75 |
|
eqid |
|
| 76 |
|
eqid |
|
| 77 |
1 73 2 74 75 76
|
matvsca2 |
|
| 78 |
66 72 77
|
syl2anc |
|
| 79 |
|
3anass |
|
| 80 |
79
|
biimpri |
|
| 81 |
80
|
adantlr |
|
| 82 |
2 75
|
ringcl |
|
| 83 |
81 82
|
syl |
|
| 84 |
|
fmptsn |
|
| 85 |
5 83 84
|
sylancr |
|
| 86 |
65 78 85
|
3eqtr4d |
|