Metamath Proof Explorer


Theorem mat2pmat1

Description: The transformation of the identity matrix results in the identity polynomial matrix. (Contributed by AV, 29-Oct-2019)

Ref Expression
Hypotheses mat2pmatbas.t T = N matToPolyMat R
mat2pmatbas.a A = N Mat R
mat2pmatbas.b B = Base A
mat2pmatbas.p P = Poly 1 R
mat2pmatbas.c C = N Mat P
mat2pmatbas0.h H = Base C
Assertion mat2pmat1 N Fin R Ring T 1 A = 1 C

Proof

Step Hyp Ref Expression
1 mat2pmatbas.t T = N matToPolyMat R
2 mat2pmatbas.a A = N Mat R
3 mat2pmatbas.b B = Base A
4 mat2pmatbas.p P = Poly 1 R
5 mat2pmatbas.c C = N Mat P
6 mat2pmatbas0.h H = Base C
7 simpl N Fin R Ring N Fin
8 simpr N Fin R Ring R Ring
9 2 matring N Fin R Ring A Ring
10 eqid 1 A = 1 A
11 3 10 ringidcl A Ring 1 A B
12 9 11 syl N Fin R Ring 1 A B
13 7 8 12 3jca N Fin R Ring N Fin R Ring 1 A B
14 eqid algSc P = algSc P
15 1 2 3 4 14 mat2pmatvalel N Fin R Ring 1 A B i N j N i T 1 A j = algSc P i 1 A j
16 13 15 sylan N Fin R Ring i N j N i T 1 A j = algSc P i 1 A j
17 fvif algSc P if i = j 1 R 0 R = if i = j algSc P 1 R algSc P 0 R
18 eqid 1 R = 1 R
19 eqid 1 P = 1 P
20 4 14 18 19 ply1scl1 R Ring algSc P 1 R = 1 P
21 20 ad2antlr N Fin R Ring i N j N algSc P 1 R = 1 P
22 eqid 0 R = 0 R
23 eqid 0 P = 0 P
24 4 14 22 23 ply1scl0 R Ring algSc P 0 R = 0 P
25 24 ad2antlr N Fin R Ring i N j N algSc P 0 R = 0 P
26 21 25 ifeq12d N Fin R Ring i N j N if i = j algSc P 1 R algSc P 0 R = if i = j 1 P 0 P
27 17 26 eqtrid N Fin R Ring i N j N algSc P if i = j 1 R 0 R = if i = j 1 P 0 P
28 7 adantr N Fin R Ring i N j N N Fin
29 8 adantr N Fin R Ring i N j N R Ring
30 simpl i N j N i N
31 30 adantl N Fin R Ring i N j N i N
32 simpr i N j N j N
33 32 adantl N Fin R Ring i N j N j N
34 2 18 22 28 29 31 33 10 mat1ov N Fin R Ring i N j N i 1 A j = if i = j 1 R 0 R
35 34 fveq2d N Fin R Ring i N j N algSc P i 1 A j = algSc P if i = j 1 R 0 R
36 4 ply1ring R Ring P Ring
37 36 ad2antlr N Fin R Ring i N j N P Ring
38 eqid 1 C = 1 C
39 5 19 23 28 37 31 33 38 mat1ov N Fin R Ring i N j N i 1 C j = if i = j 1 P 0 P
40 27 35 39 3eqtr4d N Fin R Ring i N j N algSc P i 1 A j = i 1 C j
41 16 40 eqtrd N Fin R Ring i N j N i T 1 A j = i 1 C j
42 41 ralrimivva N Fin R Ring i N j N i T 1 A j = i 1 C j
43 1 2 3 4 5 6 mat2pmatbas0 N Fin R Ring 1 A B T 1 A H
44 13 43 syl N Fin R Ring T 1 A H
45 4 5 pmatring N Fin R Ring C Ring
46 6 38 ringidcl C Ring 1 C H
47 45 46 syl N Fin R Ring 1 C H
48 5 6 eqmat T 1 A H 1 C H T 1 A = 1 C i N j N i T 1 A j = i 1 C j
49 44 47 48 syl2anc N Fin R Ring T 1 A = 1 C i N j N i T 1 A j = i 1 C j
50 42 49 mpbird N Fin R Ring T 1 A = 1 C