Metamath Proof Explorer


Theorem mat2pmat1

Description: The transformation of the identity matrix results in the identity polynomial matrix. (Contributed by AV, 29-Oct-2019)

Ref Expression
Hypotheses mat2pmatbas.t T=NmatToPolyMatR
mat2pmatbas.a A=NMatR
mat2pmatbas.b B=BaseA
mat2pmatbas.p P=Poly1R
mat2pmatbas.c C=NMatP
mat2pmatbas0.h H=BaseC
Assertion mat2pmat1 NFinRRingT1A=1C

Proof

Step Hyp Ref Expression
1 mat2pmatbas.t T=NmatToPolyMatR
2 mat2pmatbas.a A=NMatR
3 mat2pmatbas.b B=BaseA
4 mat2pmatbas.p P=Poly1R
5 mat2pmatbas.c C=NMatP
6 mat2pmatbas0.h H=BaseC
7 simpl NFinRRingNFin
8 simpr NFinRRingRRing
9 2 matring NFinRRingARing
10 eqid 1A=1A
11 3 10 ringidcl ARing1AB
12 9 11 syl NFinRRing1AB
13 7 8 12 3jca NFinRRingNFinRRing1AB
14 eqid algScP=algScP
15 1 2 3 4 14 mat2pmatvalel NFinRRing1ABiNjNiT1Aj=algScPi1Aj
16 13 15 sylan NFinRRingiNjNiT1Aj=algScPi1Aj
17 fvif algScPifi=j1R0R=ifi=jalgScP1RalgScP0R
18 eqid 1R=1R
19 eqid 1P=1P
20 4 14 18 19 ply1scl1 RRingalgScP1R=1P
21 20 ad2antlr NFinRRingiNjNalgScP1R=1P
22 eqid 0R=0R
23 eqid 0P=0P
24 4 14 22 23 ply1scl0 RRingalgScP0R=0P
25 24 ad2antlr NFinRRingiNjNalgScP0R=0P
26 21 25 ifeq12d NFinRRingiNjNifi=jalgScP1RalgScP0R=ifi=j1P0P
27 17 26 eqtrid NFinRRingiNjNalgScPifi=j1R0R=ifi=j1P0P
28 7 adantr NFinRRingiNjNNFin
29 8 adantr NFinRRingiNjNRRing
30 simpl iNjNiN
31 30 adantl NFinRRingiNjNiN
32 simpr iNjNjN
33 32 adantl NFinRRingiNjNjN
34 2 18 22 28 29 31 33 10 mat1ov NFinRRingiNjNi1Aj=ifi=j1R0R
35 34 fveq2d NFinRRingiNjNalgScPi1Aj=algScPifi=j1R0R
36 4 ply1ring RRingPRing
37 36 ad2antlr NFinRRingiNjNPRing
38 eqid 1C=1C
39 5 19 23 28 37 31 33 38 mat1ov NFinRRingiNjNi1Cj=ifi=j1P0P
40 27 35 39 3eqtr4d NFinRRingiNjNalgScPi1Aj=i1Cj
41 16 40 eqtrd NFinRRingiNjNiT1Aj=i1Cj
42 41 ralrimivva NFinRRingiNjNiT1Aj=i1Cj
43 1 2 3 4 5 6 mat2pmatbas0 NFinRRing1ABT1AH
44 13 43 syl NFinRRingT1AH
45 4 5 pmatring NFinRRingCRing
46 6 38 ringidcl CRing1CH
47 45 46 syl NFinRRing1CH
48 5 6 eqmat T1AH1CHT1A=1CiNjNiT1Aj=i1Cj
49 44 47 48 syl2anc NFinRRingT1A=1CiNjNiT1Aj=i1Cj
50 42 49 mpbird NFinRRingT1A=1C