Description: The transformation of the identity matrix results in the identity polynomial matrix. (Contributed by AV, 29-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mat2pmatbas.t | |
|
mat2pmatbas.a | |
||
mat2pmatbas.b | |
||
mat2pmatbas.p | |
||
mat2pmatbas.c | |
||
mat2pmatbas0.h | |
||
Assertion | mat2pmat1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mat2pmatbas.t | |
|
2 | mat2pmatbas.a | |
|
3 | mat2pmatbas.b | |
|
4 | mat2pmatbas.p | |
|
5 | mat2pmatbas.c | |
|
6 | mat2pmatbas0.h | |
|
7 | simpl | |
|
8 | simpr | |
|
9 | 2 | matring | |
10 | eqid | |
|
11 | 3 10 | ringidcl | |
12 | 9 11 | syl | |
13 | 7 8 12 | 3jca | |
14 | eqid | |
|
15 | 1 2 3 4 14 | mat2pmatvalel | |
16 | 13 15 | sylan | |
17 | fvif | |
|
18 | eqid | |
|
19 | eqid | |
|
20 | 4 14 18 19 | ply1scl1 | |
21 | 20 | ad2antlr | |
22 | eqid | |
|
23 | eqid | |
|
24 | 4 14 22 23 | ply1scl0 | |
25 | 24 | ad2antlr | |
26 | 21 25 | ifeq12d | |
27 | 17 26 | eqtrid | |
28 | 7 | adantr | |
29 | 8 | adantr | |
30 | simpl | |
|
31 | 30 | adantl | |
32 | simpr | |
|
33 | 32 | adantl | |
34 | 2 18 22 28 29 31 33 10 | mat1ov | |
35 | 34 | fveq2d | |
36 | 4 | ply1ring | |
37 | 36 | ad2antlr | |
38 | eqid | |
|
39 | 5 19 23 28 37 31 33 38 | mat1ov | |
40 | 27 35 39 | 3eqtr4d | |
41 | 16 40 | eqtrd | |
42 | 41 | ralrimivva | |
43 | 1 2 3 4 5 6 | mat2pmatbas0 | |
44 | 13 43 | syl | |
45 | 4 5 | pmatring | |
46 | 6 38 | ringidcl | |
47 | 45 46 | syl | |
48 | 5 6 | eqmat | |
49 | 44 47 48 | syl2anc | |
50 | 42 49 | mpbird | |