Metamath Proof Explorer


Theorem mbflimlem

Description: The pointwise limit of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014)

Ref Expression
Hypotheses mbflim.1 Z=M
mbflim.2 φM
mbflim.4 φxAnZBC
mbflim.5 φnZxABMblFn
mbflimlem.6 φnZxAB
Assertion mbflimlem φxACMblFn

Proof

Step Hyp Ref Expression
1 mbflim.1 Z=M
2 mbflim.2 φM
3 mbflim.4 φxAnZBC
4 mbflim.5 φnZxABMblFn
5 mbflimlem.6 φnZxAB
6 5 anass1rs φxAnZB
7 6 fmpttd φxAnZB:Z
8 2 adantr φxAM
9 climrel Rel
10 9 releldmi nZBCnZBdom
11 3 10 syl φxAnZBdom
12 1 climcau MnZBdomy+kZjknZBjnZBk<y
13 8 11 12 syl2anc φxAy+kZjknZBjnZBk<y
14 1 7 13 caurcvg φxAnZBlim supnZB
15 climuni nZBlim supnZBnZBClim supnZB=C
16 14 3 15 syl2anc φxAlim supnZB=C
17 16 mpteq2dva φxAlim supnZB=xAC
18 eqid xAlim supnZB=xAlim supnZB
19 eqid msupnZBm+∞**<=msupnZBm+∞**<
20 7 ffvelcdmda φxAkZnZBk
21 1 8 14 20 climrecl φxAlim supnZB
22 1 18 19 2 21 4 5 mbflimsup φxAlim supnZBMblFn
23 17 22 eqeltrrd φxACMblFn