Step |
Hyp |
Ref |
Expression |
1 |
|
mbfss.1 |
|
2 |
|
mbfss.2 |
|
3 |
|
mbfss.3 |
|
4 |
|
mbfss.4 |
|
5 |
|
mbfss.5 |
|
6 |
|
elun |
|
7 |
|
undif2 |
|
8 |
|
ssequn1 |
|
9 |
1 8
|
sylib |
|
10 |
7 9
|
eqtrid |
|
11 |
10
|
eleq2d |
|
12 |
6 11
|
bitr3id |
|
13 |
12
|
biimpar |
|
14 |
5 3
|
mbfmptcl |
|
15 |
|
0cn |
|
16 |
4 15
|
eqeltrdi |
|
17 |
14 16
|
jaodan |
|
18 |
13 17
|
syldan |
|
19 |
18
|
recld |
|
20 |
19
|
fmpttd |
|
21 |
1
|
resmptd |
|
22 |
14
|
ismbfcn2 |
|
23 |
5 22
|
mpbid |
|
24 |
23
|
simpld |
|
25 |
21 24
|
eqeltrd |
|
26 |
|
difss |
|
27 |
|
resmpt |
|
28 |
26 27
|
ax-mp |
|
29 |
4
|
fveq2d |
|
30 |
|
re0 |
|
31 |
29 30
|
eqtrdi |
|
32 |
31
|
mpteq2dva |
|
33 |
28 32
|
eqtrid |
|
34 |
|
fconstmpt |
|
35 |
5 3
|
mbfdm2 |
|
36 |
|
difmbl |
|
37 |
2 35 36
|
syl2anc |
|
38 |
|
mbfconst |
|
39 |
37 15 38
|
sylancl |
|
40 |
34 39
|
eqeltrrid |
|
41 |
33 40
|
eqeltrd |
|
42 |
20 25 41 10
|
mbfres2 |
|
43 |
18
|
imcld |
|
44 |
43
|
fmpttd |
|
45 |
1
|
resmptd |
|
46 |
23
|
simprd |
|
47 |
45 46
|
eqeltrd |
|
48 |
|
resmpt |
|
49 |
26 48
|
ax-mp |
|
50 |
4
|
fveq2d |
|
51 |
|
im0 |
|
52 |
50 51
|
eqtrdi |
|
53 |
52
|
mpteq2dva |
|
54 |
49 53
|
eqtrid |
|
55 |
54 40
|
eqeltrd |
|
56 |
44 47 55 10
|
mbfres2 |
|
57 |
18
|
ismbfcn2 |
|
58 |
42 56 57
|
mpbir2and |
|