Metamath Proof Explorer


Theorem mbfss

Description: Change the domain of a measurability predicate. (Contributed by Mario Carneiro, 17-Aug-2014)

Ref Expression
Hypotheses mbfss.1 φAB
mbfss.2 φBdomvol
mbfss.3 φxACV
mbfss.4 φxBAC=0
mbfss.5 φxACMblFn
Assertion mbfss φxBCMblFn

Proof

Step Hyp Ref Expression
1 mbfss.1 φAB
2 mbfss.2 φBdomvol
3 mbfss.3 φxACV
4 mbfss.4 φxBAC=0
5 mbfss.5 φxACMblFn
6 elun xABAxAxBA
7 undif2 ABA=AB
8 ssequn1 ABAB=B
9 1 8 sylib φAB=B
10 7 9 eqtrid φABA=B
11 10 eleq2d φxABAxB
12 6 11 bitr3id φxAxBAxB
13 12 biimpar φxBxAxBA
14 5 3 mbfmptcl φxAC
15 0cn 0
16 4 15 eqeltrdi φxBAC
17 14 16 jaodan φxAxBAC
18 13 17 syldan φxBC
19 18 recld φxBC
20 19 fmpttd φxBC:B
21 1 resmptd φxBCA=xAC
22 14 ismbfcn2 φxACMblFnxACMblFnxACMblFn
23 5 22 mpbid φxACMblFnxACMblFn
24 23 simpld φxACMblFn
25 21 24 eqeltrd φxBCAMblFn
26 difss BAB
27 resmpt BABxBCBA=xBAC
28 26 27 ax-mp xBCBA=xBAC
29 4 fveq2d φxBAC=0
30 re0 0=0
31 29 30 eqtrdi φxBAC=0
32 31 mpteq2dva φxBAC=xBA0
33 28 32 eqtrid φxBCBA=xBA0
34 fconstmpt BA×0=xBA0
35 5 3 mbfdm2 φAdomvol
36 difmbl BdomvolAdomvolBAdomvol
37 2 35 36 syl2anc φBAdomvol
38 mbfconst BAdomvol0BA×0MblFn
39 37 15 38 sylancl φBA×0MblFn
40 34 39 eqeltrrid φxBA0MblFn
41 33 40 eqeltrd φxBCBAMblFn
42 20 25 41 10 mbfres2 φxBCMblFn
43 18 imcld φxBC
44 43 fmpttd φxBC:B
45 1 resmptd φxBCA=xAC
46 23 simprd φxACMblFn
47 45 46 eqeltrd φxBCAMblFn
48 resmpt BABxBCBA=xBAC
49 26 48 ax-mp xBCBA=xBAC
50 4 fveq2d φxBAC=0
51 im0 0=0
52 50 51 eqtrdi φxBAC=0
53 52 mpteq2dva φxBAC=xBA0
54 49 53 eqtrid φxBCBA=xBA0
55 54 40 eqeltrd φxBCBAMblFn
56 44 47 55 10 mbfres2 φxBCMblFn
57 18 ismbfcn2 φxBCMblFnxBCMblFnxBCMblFn
58 42 56 57 mpbir2and φxBCMblFn