Description: Modular pair conditions that imply the modular pair property in a sublattice. Lemma 1.5.1 of MaedaMaeda p. 2. (Contributed by NM, 23-Dec-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mdslmd.1 | |
|
mdslmd.2 | |
||
mdslmd.3 | |
||
mdslmd.4 | |
||
Assertion | mdslmd3i | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdslmd.1 | |
|
2 | mdslmd.2 | |
|
3 | mdslmd.3 | |
|
4 | mdslmd.4 | |
|
5 | chlej2 | |
|
6 | 5 | ex | |
7 | 4 1 6 | mp3an12 | |
8 | 7 | impcom | |
9 | 8 | ssrind | |
10 | 9 | adantll | |
11 | 10 | adantll | |
12 | 11 | adantr | |
13 | ssin | |
|
14 | inass | |
|
15 | mdi | |
|
16 | 1 15 | mp3anl1 | |
17 | 2 16 | mpanl1 | |
18 | 17 | ineq1d | |
19 | 14 18 | eqtr3id | |
20 | 19 | adantrlr | |
21 | 20 | adantrrr | |
22 | 1 2 | chincli | |
23 | mdi | |
|
24 | 22 23 | mp3anl1 | |
25 | 3 24 | mpanl1 | |
26 | inass | |
|
27 | 26 | oveq2i | |
28 | 25 27 | eqtrdi | |
29 | 28 | adantrll | |
30 | 29 | adantrrl | |
31 | 21 30 | eqtrd | |
32 | 31 | ancoms | |
33 | 32 | an32s | |
34 | 13 33 | sylan2br | |
35 | 34 | adantllr | |
36 | inass | |
|
37 | in12 | |
|
38 | inidm | |
|
39 | 38 | ineq2i | |
40 | 37 39 | eqtri | |
41 | 40 | ineq2i | |
42 | 36 41 | eqtr2i | |
43 | ssrin | |
|
44 | 42 43 | eqsstrid | |
45 | ssrin | |
|
46 | 44 45 | anim12i | |
47 | eqss | |
|
48 | 46 47 | sylibr | |
49 | 48 | oveq2d | |
50 | 49 | ad3antlr | |
51 | 35 50 | eqtrd | |
52 | 12 51 | sseqtrd | |
53 | 52 | ex | |
54 | 53 | ralrimiva | |
55 | 2 3 | chincli | |
56 | mdbr2 | |
|
57 | 4 55 56 | mp2an | |
58 | 54 57 | sylibr | |