Metamath Proof Explorer


Theorem mdsymlem6

Description: Lemma for mdsymi . This is the converse direction of Lemma 4(i) of Maeda p. 168, and is based on the proof of Theorem 1(d) to (e) of Maeda p. 167. (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)

Ref Expression
Hypotheses mdsymlem1.1 A C
mdsymlem1.2 B C
mdsymlem1.3 C = A p
Assertion mdsymlem6 p HAtoms p A B q HAtoms r HAtoms p q r q A r B B 𝑀 * A

Proof

Step Hyp Ref Expression
1 mdsymlem1.1 A C
2 mdsymlem1.2 B C
3 mdsymlem1.3 C = A p
4 1 2 chjcomi A B = B A
5 4 sseq2i p A B p B A
6 5 anbi2i p c p A B p c p B A
7 ssin p c p B A p c B A
8 6 7 bitri p c p A B p c B A
9 1 2 3 mdsymlem5 q HAtoms r HAtoms ¬ q = p p q r q A r B c C A c p HAtoms p c p c B A
10 sseq1 q = p q A p A
11 chincl c C B C c B C
12 2 11 mpan2 c C c B C
13 chub2 A C c B C A c B A
14 1 12 13 sylancr c C A c B A
15 sstr2 p A A c B A p c B A
16 14 15 syl5 p A c C p c B A
17 10 16 syl6bi q = p q A c C p c B A
18 17 impd q = p q A c C p c B A
19 18 a1i p c q = p q A c C p c B A
20 19 com13 q A c C q = p p c p c B A
21 20 adantrr q A c C A c q = p p c p c B A
22 21 ad2ant2r q A r B c C A c p HAtoms q = p p c p c B A
23 22 adantll p q r q A r B c C A c p HAtoms q = p p c p c B A
24 23 com12 q = p p q r q A r B c C A c p HAtoms p c p c B A
25 24 expd q = p p q r q A r B c C A c p HAtoms p c p c B A
26 9 25 pm2.61d2 q HAtoms r HAtoms p q r q A r B c C A c p HAtoms p c p c B A
27 26 rexlimivv q HAtoms r HAtoms p q r q A r B c C A c p HAtoms p c p c B A
28 27 com12 c C A c p HAtoms q HAtoms r HAtoms p q r q A r B p c p c B A
29 28 imim2d c C A c p HAtoms p A B q HAtoms r HAtoms p q r q A r B p A B p c p c B A
30 29 com34 c C A c p HAtoms p A B q HAtoms r HAtoms p q r q A r B p c p A B p c B A
31 30 imp4b c C A c p HAtoms p A B q HAtoms r HAtoms p q r q A r B p c p A B p c B A
32 8 31 syl5bir c C A c p HAtoms p A B q HAtoms r HAtoms p q r q A r B p c B A p c B A
33 32 ex c C A c p HAtoms p A B q HAtoms r HAtoms p q r q A r B p c B A p c B A
34 33 ralimdva c C A c p HAtoms p A B q HAtoms r HAtoms p q r q A r B p HAtoms p c B A p c B A
35 2 1 chjcli B A C
36 chincl c C B A C c B A C
37 35 36 mpan2 c C c B A C
38 chjcl c B C A C c B A C
39 12 1 38 sylancl c C c B A C
40 chrelat3 c B A C c B A C c B A c B A p HAtoms p c B A p c B A
41 37 39 40 syl2anc c C c B A c B A p HAtoms p c B A p c B A
42 41 adantr c C A c c B A c B A p HAtoms p c B A p c B A
43 34 42 sylibrd c C A c p HAtoms p A B q HAtoms r HAtoms p q r q A r B c B A c B A
44 43 ex c C A c p HAtoms p A B q HAtoms r HAtoms p q r q A r B c B A c B A
45 44 com3r p HAtoms p A B q HAtoms r HAtoms p q r q A r B c C A c c B A c B A
46 45 ralrimiv p HAtoms p A B q HAtoms r HAtoms p q r q A r B c C A c c B A c B A
47 dmdbr2 B C A C B 𝑀 * A c C A c c B A c B A
48 2 1 47 mp2an B 𝑀 * A c C A c c B A c B A
49 46 48 sylibr p HAtoms p A B q HAtoms r HAtoms p q r q A r B B 𝑀 * A