Description: Lemma for mdsymi . This is the converse direction of Lemma 4(i) of Maeda p. 168, and is based on the proof of Theorem 1(d) to (e) of Maeda p. 167. (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mdsymlem1.1 | |
|
mdsymlem1.2 | |
||
mdsymlem1.3 | |
||
Assertion | mdsymlem6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdsymlem1.1 | |
|
2 | mdsymlem1.2 | |
|
3 | mdsymlem1.3 | |
|
4 | 1 2 | chjcomi | |
5 | 4 | sseq2i | |
6 | 5 | anbi2i | |
7 | ssin | |
|
8 | 6 7 | bitri | |
9 | 1 2 3 | mdsymlem5 | |
10 | sseq1 | |
|
11 | chincl | |
|
12 | 2 11 | mpan2 | |
13 | chub2 | |
|
14 | 1 12 13 | sylancr | |
15 | sstr2 | |
|
16 | 14 15 | syl5 | |
17 | 10 16 | syl6bi | |
18 | 17 | impd | |
19 | 18 | a1i | |
20 | 19 | com13 | |
21 | 20 | adantrr | |
22 | 21 | ad2ant2r | |
23 | 22 | adantll | |
24 | 23 | com12 | |
25 | 24 | expd | |
26 | 9 25 | pm2.61d2 | |
27 | 26 | rexlimivv | |
28 | 27 | com12 | |
29 | 28 | imim2d | |
30 | 29 | com34 | |
31 | 30 | imp4b | |
32 | 8 31 | biimtrrid | |
33 | 32 | ex | |
34 | 33 | ralimdva | |
35 | 2 1 | chjcli | |
36 | chincl | |
|
37 | 35 36 | mpan2 | |
38 | chjcl | |
|
39 | 12 1 38 | sylancl | |
40 | chrelat3 | |
|
41 | 37 39 40 | syl2anc | |
42 | 41 | adantr | |
43 | 34 42 | sylibrd | |
44 | 43 | ex | |
45 | 44 | com3r | |
46 | 45 | ralrimiv | |
47 | dmdbr2 | |
|
48 | 2 1 47 | mp2an | |
49 | 46 48 | sylibr | |