Metamath Proof Explorer


Theorem mdsymlem6

Description: Lemma for mdsymi . This is the converse direction of Lemma 4(i) of Maeda p. 168, and is based on the proof of Theorem 1(d) to (e) of Maeda p. 167. (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)

Ref Expression
Hypotheses mdsymlem1.1 AC
mdsymlem1.2 BC
mdsymlem1.3 C=Ap
Assertion mdsymlem6 pHAtomspABqHAtomsrHAtomspqrqArBB𝑀*A

Proof

Step Hyp Ref Expression
1 mdsymlem1.1 AC
2 mdsymlem1.2 BC
3 mdsymlem1.3 C=Ap
4 1 2 chjcomi AB=BA
5 4 sseq2i pABpBA
6 5 anbi2i pcpABpcpBA
7 ssin pcpBApcBA
8 6 7 bitri pcpABpcBA
9 1 2 3 mdsymlem5 qHAtomsrHAtoms¬q=ppqrqArBcCAcpHAtomspcpcBA
10 sseq1 q=pqApA
11 chincl cCBCcBC
12 2 11 mpan2 cCcBC
13 chub2 ACcBCAcBA
14 1 12 13 sylancr cCAcBA
15 sstr2 pAAcBApcBA
16 14 15 syl5 pAcCpcBA
17 10 16 syl6bi q=pqAcCpcBA
18 17 impd q=pqAcCpcBA
19 18 a1i pcq=pqAcCpcBA
20 19 com13 qAcCq=ppcpcBA
21 20 adantrr qAcCAcq=ppcpcBA
22 21 ad2ant2r qArBcCAcpHAtomsq=ppcpcBA
23 22 adantll pqrqArBcCAcpHAtomsq=ppcpcBA
24 23 com12 q=ppqrqArBcCAcpHAtomspcpcBA
25 24 expd q=ppqrqArBcCAcpHAtomspcpcBA
26 9 25 pm2.61d2 qHAtomsrHAtomspqrqArBcCAcpHAtomspcpcBA
27 26 rexlimivv qHAtomsrHAtomspqrqArBcCAcpHAtomspcpcBA
28 27 com12 cCAcpHAtomsqHAtomsrHAtomspqrqArBpcpcBA
29 28 imim2d cCAcpHAtomspABqHAtomsrHAtomspqrqArBpABpcpcBA
30 29 com34 cCAcpHAtomspABqHAtomsrHAtomspqrqArBpcpABpcBA
31 30 imp4b cCAcpHAtomspABqHAtomsrHAtomspqrqArBpcpABpcBA
32 8 31 biimtrrid cCAcpHAtomspABqHAtomsrHAtomspqrqArBpcBApcBA
33 32 ex cCAcpHAtomspABqHAtomsrHAtomspqrqArBpcBApcBA
34 33 ralimdva cCAcpHAtomspABqHAtomsrHAtomspqrqArBpHAtomspcBApcBA
35 2 1 chjcli BAC
36 chincl cCBACcBAC
37 35 36 mpan2 cCcBAC
38 chjcl cBCACcBAC
39 12 1 38 sylancl cCcBAC
40 chrelat3 cBACcBACcBAcBApHAtomspcBApcBA
41 37 39 40 syl2anc cCcBAcBApHAtomspcBApcBA
42 41 adantr cCAccBAcBApHAtomspcBApcBA
43 34 42 sylibrd cCAcpHAtomspABqHAtomsrHAtomspqrqArBcBAcBA
44 43 ex cCAcpHAtomspABqHAtomsrHAtomspqrqArBcBAcBA
45 44 com3r pHAtomspABqHAtomsrHAtomspqrqArBcCAccBAcBA
46 45 ralrimiv pHAtomspABqHAtomsrHAtomspqrqArBcCAccBAcBA
47 dmdbr2 BCACB𝑀*AcCAccBAcBA
48 2 1 47 mp2an B𝑀*AcCAccBAcBA
49 46 48 sylibr pHAtomspABqHAtomsrHAtomspqrqArBB𝑀*A