Metamath Proof Explorer


Theorem metakunt33

Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 18-Jul-2024)

Ref Expression
Hypotheses metakunt33.1 φM
metakunt33.2 φI
metakunt33.3 φIM
metakunt33.4 A=x1Mifx=IMifx<Ixx1
metakunt33.5 B=z1Mifz=MMifz<Iz+M-Iz+1-I
metakunt33.6 C=y1Mify=MIify<Iyy+1
metakunt33.7 D=w1Mifw=Iwifw<Iw+MI+ifIw+M-I10w-I+ifIwI10
Assertion metakunt33 φCBA=D

Proof

Step Hyp Ref Expression
1 metakunt33.1 φM
2 metakunt33.2 φI
3 metakunt33.3 φIM
4 metakunt33.4 A=x1Mifx=IMifx<Ixx1
5 metakunt33.5 B=z1Mifz=MMifz<Iz+M-Iz+1-I
6 metakunt33.6 C=y1Mify=MIify<Iyy+1
7 metakunt33.7 D=w1Mifw=Iwifw<Iw+MI+ifIw+M-I10w-I+ifIwI10
8 1 2 3 6 metakunt2 φC:1M1M
9 1 2 3 5 metakunt25 φB:1M1-1 onto1M
10 f1of B:1M1-1 onto1MB:1M1M
11 9 10 syl φB:1M1M
12 1 2 3 4 metakunt1 φA:1M1M
13 11 12 fcod φBA:1M1M
14 8 13 fcod φCBA:1M1M
15 14 ffnd φCBAFn1M
16 nfv wφ
17 elfzelz w1Mw
18 17 adantl φw1Mw
19 1 nnzd φM
20 19 adantr φw1MM
21 2 nnzd φI
22 21 adantr φw1MI
23 20 22 zsubcld φw1MMI
24 18 23 zaddcld φw1Mw+M-I
25 1zzd φw1M1
26 0zd φw1M0
27 25 26 ifcld φw1MifIw+M-I10
28 24 27 zaddcld φw1Mw+MI+ifIw+M-I10
29 18 22 zsubcld φw1MwI
30 25 26 ifcld φw1MifIwI10
31 29 30 zaddcld φw1Mw-I+ifIwI10
32 28 31 ifcld φw1Mifw<Iw+MI+ifIw+M-I10w-I+ifIwI10
33 18 32 ifcld φw1Mifw=Iwifw<Iw+MI+ifIw+M-I10w-I+ifIwI10
34 16 33 7 fnmptd φDFn1M
35 13 adantr φa1MBA:1M1M
36 simpr φa1Ma1M
37 35 36 fvco3d φa1MCBAa=CBAa
38 12 adantr φa1MA:1M1M
39 38 36 fvco3d φa1MBAa=BAa
40 39 fveq2d φa1MCBAa=CBAa
41 37 40 eqtrd φa1MCBAa=CBAa
42 1 adantr φa1MM
43 2 adantr φa1MI
44 3 adantr φa1MIM
45 eqid ifIa+M-I10=ifIa+M-I10
46 eqid ifIaI10=ifIaI10
47 eqid ifa=Iaifa<Ia+MI+ifIa+M-I10a-I+ifIaI10=ifa=Iaifa<Ia+MI+ifIa+M-I10a-I+ifIaI10
48 42 43 44 36 4 5 6 45 46 47 metakunt31 φa1MCBAa=ifa=Iaifa<Ia+MI+ifIa+M-I10a-I+ifIaI10
49 42 43 44 36 7 45 46 47 metakunt32 φa1MDa=ifa=Iaifa<Ia+MI+ifIa+M-I10a-I+ifIaI10
50 49 eqcomd φa1Mifa=Iaifa<Ia+MI+ifIa+M-I10a-I+ifIaI10=Da
51 48 50 eqtrd φa1MCBAa=Da
52 41 51 eqtrd φa1MCBAa=Da
53 15 34 52 eqfnfvd φCBA=D