Metamath Proof Explorer


Theorem metnrmlem1

Description: Lemma for metnrm . (Contributed by Mario Carneiro, 14-Jan-2014) (Revised by Mario Carneiro, 4-Sep-2015)

Ref Expression
Hypotheses metdscn.f F=xXsupranySxDy*<
metdscn.j J=MetOpenD
metnrmlem.1 φD∞MetX
metnrmlem.2 φSClsdJ
metnrmlem.3 φTClsdJ
metnrmlem.4 φST=
Assertion metnrmlem1 φASBTif1FB1FBADB

Proof

Step Hyp Ref Expression
1 metdscn.f F=xXsupranySxDy*<
2 metdscn.j J=MetOpenD
3 metnrmlem.1 φD∞MetX
4 metnrmlem.2 φSClsdJ
5 metnrmlem.3 φTClsdJ
6 metnrmlem.4 φST=
7 1xr 1*
8 3 adantr φASBTD∞MetX
9 4 adantr φASBTSClsdJ
10 eqid J=J
11 10 cldss SClsdJSJ
12 9 11 syl φASBTSJ
13 2 mopnuni D∞MetXX=J
14 8 13 syl φASBTX=J
15 12 14 sseqtrrd φASBTSX
16 1 metdsf D∞MetXSXF:X0+∞
17 8 15 16 syl2anc φASBTF:X0+∞
18 5 adantr φASBTTClsdJ
19 10 cldss TClsdJTJ
20 18 19 syl φASBTTJ
21 20 14 sseqtrrd φASBTTX
22 simprr φASBTBT
23 21 22 sseldd φASBTBX
24 17 23 ffvelcdmd φASBTFB0+∞
25 eliccxr FB0+∞FB*
26 24 25 syl φASBTFB*
27 ifcl 1*FB*if1FB1FB*
28 7 26 27 sylancr φASBTif1FB1FB*
29 simprl φASBTAS
30 15 29 sseldd φASBTAX
31 xmetcl D∞MetXAXBXADB*
32 8 30 23 31 syl3anc φASBTADB*
33 xrmin2 1*FB*if1FB1FBFB
34 7 26 33 sylancr φASBTif1FB1FBFB
35 1 metdstri D∞MetXSXBXAXFBBDA+𝑒FA
36 8 15 23 30 35 syl22anc φASBTFBBDA+𝑒FA
37 xmetsym D∞MetXBXAXBDA=ADB
38 8 23 30 37 syl3anc φASBTBDA=ADB
39 1 metds0 D∞MetXSXASFA=0
40 8 15 29 39 syl3anc φASBTFA=0
41 38 40 oveq12d φASBTBDA+𝑒FA=ADB+𝑒0
42 32 xaddridd φASBTADB+𝑒0=ADB
43 41 42 eqtrd φASBTBDA+𝑒FA=ADB
44 36 43 breqtrd φASBTFBADB
45 28 26 32 34 44 xrletrd φASBTif1FB1FBADB