Description: Lemma for metnrm . (Contributed by Mario Carneiro, 14-Jan-2014) (Revised by Mario Carneiro, 4-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | metdscn.f | |
|
metdscn.j | |
||
metnrmlem.1 | |
||
metnrmlem.2 | |
||
metnrmlem.3 | |
||
metnrmlem.4 | |
||
Assertion | metnrmlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metdscn.f | |
|
2 | metdscn.j | |
|
3 | metnrmlem.1 | |
|
4 | metnrmlem.2 | |
|
5 | metnrmlem.3 | |
|
6 | metnrmlem.4 | |
|
7 | 1xr | |
|
8 | 3 | adantr | |
9 | 4 | adantr | |
10 | eqid | |
|
11 | 10 | cldss | |
12 | 9 11 | syl | |
13 | 2 | mopnuni | |
14 | 8 13 | syl | |
15 | 12 14 | sseqtrrd | |
16 | 1 | metdsf | |
17 | 8 15 16 | syl2anc | |
18 | 5 | adantr | |
19 | 10 | cldss | |
20 | 18 19 | syl | |
21 | 20 14 | sseqtrrd | |
22 | simprr | |
|
23 | 21 22 | sseldd | |
24 | 17 23 | ffvelcdmd | |
25 | eliccxr | |
|
26 | 24 25 | syl | |
27 | ifcl | |
|
28 | 7 26 27 | sylancr | |
29 | simprl | |
|
30 | 15 29 | sseldd | |
31 | xmetcl | |
|
32 | 8 30 23 31 | syl3anc | |
33 | xrmin2 | |
|
34 | 7 26 33 | sylancr | |
35 | 1 | metdstri | |
36 | 8 15 23 30 35 | syl22anc | |
37 | xmetsym | |
|
38 | 8 23 30 37 | syl3anc | |
39 | 1 | metds0 | |
40 | 8 15 29 39 | syl3anc | |
41 | 38 40 | oveq12d | |
42 | 32 | xaddridd | |
43 | 41 42 | eqtrd | |
44 | 36 43 | breqtrd | |
45 | 28 26 32 34 44 | xrletrd | |