Metamath Proof Explorer


Theorem metnrmlem1

Description: Lemma for metnrm . (Contributed by Mario Carneiro, 14-Jan-2014) (Revised by Mario Carneiro, 4-Sep-2015)

Ref Expression
Hypotheses metdscn.f F = x X sup ran y S x D y * <
metdscn.j J = MetOpen D
metnrmlem.1 φ D ∞Met X
metnrmlem.2 φ S Clsd J
metnrmlem.3 φ T Clsd J
metnrmlem.4 φ S T =
Assertion metnrmlem1 φ A S B T if 1 F B 1 F B A D B

Proof

Step Hyp Ref Expression
1 metdscn.f F = x X sup ran y S x D y * <
2 metdscn.j J = MetOpen D
3 metnrmlem.1 φ D ∞Met X
4 metnrmlem.2 φ S Clsd J
5 metnrmlem.3 φ T Clsd J
6 metnrmlem.4 φ S T =
7 1xr 1 *
8 3 adantr φ A S B T D ∞Met X
9 4 adantr φ A S B T S Clsd J
10 eqid J = J
11 10 cldss S Clsd J S J
12 9 11 syl φ A S B T S J
13 2 mopnuni D ∞Met X X = J
14 8 13 syl φ A S B T X = J
15 12 14 sseqtrrd φ A S B T S X
16 1 metdsf D ∞Met X S X F : X 0 +∞
17 8 15 16 syl2anc φ A S B T F : X 0 +∞
18 5 adantr φ A S B T T Clsd J
19 10 cldss T Clsd J T J
20 18 19 syl φ A S B T T J
21 20 14 sseqtrrd φ A S B T T X
22 simprr φ A S B T B T
23 21 22 sseldd φ A S B T B X
24 17 23 ffvelrnd φ A S B T F B 0 +∞
25 eliccxr F B 0 +∞ F B *
26 24 25 syl φ A S B T F B *
27 ifcl 1 * F B * if 1 F B 1 F B *
28 7 26 27 sylancr φ A S B T if 1 F B 1 F B *
29 simprl φ A S B T A S
30 15 29 sseldd φ A S B T A X
31 xmetcl D ∞Met X A X B X A D B *
32 8 30 23 31 syl3anc φ A S B T A D B *
33 xrmin2 1 * F B * if 1 F B 1 F B F B
34 7 26 33 sylancr φ A S B T if 1 F B 1 F B F B
35 1 metdstri D ∞Met X S X B X A X F B B D A + 𝑒 F A
36 8 15 23 30 35 syl22anc φ A S B T F B B D A + 𝑒 F A
37 xmetsym D ∞Met X B X A X B D A = A D B
38 8 23 30 37 syl3anc φ A S B T B D A = A D B
39 1 metds0 D ∞Met X S X A S F A = 0
40 8 15 29 39 syl3anc φ A S B T F A = 0
41 38 40 oveq12d φ A S B T B D A + 𝑒 F A = A D B + 𝑒 0
42 32 xaddid1d φ A S B T A D B + 𝑒 0 = A D B
43 41 42 eqtrd φ A S B T B D A + 𝑒 F A = A D B
44 36 43 breqtrd φ A S B T F B A D B
45 28 26 32 34 44 xrletrd φ A S B T if 1 F B 1 F B A D B