Description: Two ways of saying that metric D generates a finer topology than metric C . (Contributed by Mario Carneiro, 12-Nov-2013) (Revised by Mario Carneiro, 24-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | metequiv.3 | |
|
metequiv.4 | |
||
Assertion | metss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metequiv.3 | |
|
2 | metequiv.4 | |
|
3 | 1 | mopnval | |
4 | 3 | adantr | |
5 | 2 | mopnval | |
6 | 5 | adantl | |
7 | 4 6 | sseq12d | |
8 | blbas | |
|
9 | unirnbl | |
|
10 | 9 | adantr | |
11 | unirnbl | |
|
12 | 11 | adantl | |
13 | 10 12 | eqtr4d | |
14 | tgss2 | |
|
15 | 8 13 14 | syl2an2r | |
16 | 10 | raleqdv | |
17 | blssex | |
|
18 | 17 | adantll | |
19 | 18 | imbi2d | |
20 | 19 | ralbidv | |
21 | rpxr | |
|
22 | blelrn | |
|
23 | 21 22 | syl3an3 | |
24 | blcntr | |
|
25 | eleq2 | |
|
26 | sseq2 | |
|
27 | 26 | rexbidv | |
28 | 25 27 | imbi12d | |
29 | 28 | rspcv | |
30 | 29 | com23 | |
31 | 23 24 30 | sylc | |
32 | 31 | ad4ant134 | |
33 | 32 | ralrimdva | |
34 | blss | |
|
35 | 34 | 3expb | |
36 | 35 | ad4ant14 | |
37 | r19.29 | |
|
38 | sstr | |
|
39 | 38 | expcom | |
40 | 39 | reximdv | |
41 | 40 | impcom | |
42 | 41 | rexlimivw | |
43 | 37 42 | syl | |
44 | 43 | ex | |
45 | 36 44 | syl5com | |
46 | 45 | expr | |
47 | 46 | com23 | |
48 | 47 | ralrimdva | |
49 | 33 48 | impbid | |
50 | 20 49 | bitrd | |
51 | 50 | ralbidva | |
52 | 16 51 | bitrd | |
53 | 7 15 52 | 3bitrd | |