Metamath Proof Explorer


Theorem metss

Description: Two ways of saying that metric D generates a finer topology than metric C . (Contributed by Mario Carneiro, 12-Nov-2013) (Revised by Mario Carneiro, 24-Aug-2015)

Ref Expression
Hypotheses metequiv.3 J=MetOpenC
metequiv.4 K=MetOpenD
Assertion metss C∞MetXD∞MetXJKxXr+s+xballDsxballCr

Proof

Step Hyp Ref Expression
1 metequiv.3 J=MetOpenC
2 metequiv.4 K=MetOpenD
3 1 mopnval C∞MetXJ=topGenranballC
4 3 adantr C∞MetXD∞MetXJ=topGenranballC
5 2 mopnval D∞MetXK=topGenranballD
6 5 adantl C∞MetXD∞MetXK=topGenranballD
7 4 6 sseq12d C∞MetXD∞MetXJKtopGenranballCtopGenranballD
8 blbas C∞MetXranballCTopBases
9 unirnbl C∞MetXranballC=X
10 9 adantr C∞MetXD∞MetXranballC=X
11 unirnbl D∞MetXranballD=X
12 11 adantl C∞MetXD∞MetXranballD=X
13 10 12 eqtr4d C∞MetXD∞MetXranballC=ranballD
14 tgss2 ranballCTopBasesranballC=ranballDtopGenranballCtopGenranballDxranballCyranballCxyzranballDxzzy
15 8 13 14 syl2an2r C∞MetXD∞MetXtopGenranballCtopGenranballDxranballCyranballCxyzranballDxzzy
16 10 raleqdv C∞MetXD∞MetXxranballCyranballCxyzranballDxzzyxXyranballCxyzranballDxzzy
17 blssex D∞MetXxXzranballDxzzys+xballDsy
18 17 adantll C∞MetXD∞MetXxXzranballDxzzys+xballDsy
19 18 imbi2d C∞MetXD∞MetXxXxyzranballDxzzyxys+xballDsy
20 19 ralbidv C∞MetXD∞MetXxXyranballCxyzranballDxzzyyranballCxys+xballDsy
21 rpxr r+r*
22 blelrn C∞MetXxXr*xballCrranballC
23 21 22 syl3an3 C∞MetXxXr+xballCrranballC
24 blcntr C∞MetXxXr+xxballCr
25 eleq2 y=xballCrxyxxballCr
26 sseq2 y=xballCrxballDsyxballDsxballCr
27 26 rexbidv y=xballCrs+xballDsys+xballDsxballCr
28 25 27 imbi12d y=xballCrxys+xballDsyxxballCrs+xballDsxballCr
29 28 rspcv xballCrranballCyranballCxys+xballDsyxxballCrs+xballDsxballCr
30 29 com23 xballCrranballCxxballCryranballCxys+xballDsys+xballDsxballCr
31 23 24 30 sylc C∞MetXxXr+yranballCxys+xballDsys+xballDsxballCr
32 31 ad4ant134 C∞MetXD∞MetXxXr+yranballCxys+xballDsys+xballDsxballCr
33 32 ralrimdva C∞MetXD∞MetXxXyranballCxys+xballDsyr+s+xballDsxballCr
34 blss C∞MetXyranballCxyr+xballCry
35 34 3expb C∞MetXyranballCxyr+xballCry
36 35 ad4ant14 C∞MetXD∞MetXxXyranballCxyr+xballCry
37 r19.29 r+s+xballDsxballCrr+xballCryr+s+xballDsxballCrxballCry
38 sstr xballDsxballCrxballCryxballDsy
39 38 expcom xballCryxballDsxballCrxballDsy
40 39 reximdv xballCrys+xballDsxballCrs+xballDsy
41 40 impcom s+xballDsxballCrxballCrys+xballDsy
42 41 rexlimivw r+s+xballDsxballCrxballCrys+xballDsy
43 37 42 syl r+s+xballDsxballCrr+xballCrys+xballDsy
44 43 ex r+s+xballDsxballCrr+xballCrys+xballDsy
45 36 44 syl5com C∞MetXD∞MetXxXyranballCxyr+s+xballDsxballCrs+xballDsy
46 45 expr C∞MetXD∞MetXxXyranballCxyr+s+xballDsxballCrs+xballDsy
47 46 com23 C∞MetXD∞MetXxXyranballCr+s+xballDsxballCrxys+xballDsy
48 47 ralrimdva C∞MetXD∞MetXxXr+s+xballDsxballCryranballCxys+xballDsy
49 33 48 impbid C∞MetXD∞MetXxXyranballCxys+xballDsyr+s+xballDsxballCr
50 20 49 bitrd C∞MetXD∞MetXxXyranballCxyzranballDxzzyr+s+xballDsxballCr
51 50 ralbidva C∞MetXD∞MetXxXyranballCxyzranballDxzzyxXr+s+xballDsxballCr
52 16 51 bitrd C∞MetXD∞MetXxranballCyranballCxyzranballDxzzyxXr+s+xballDsxballCr
53 7 15 52 3bitrd C∞MetXD∞MetXJKxXr+s+xballDsxballCr