Metamath Proof Explorer


Theorem metustid

Description: The identity diagonal is included in all elements of the filter base generated by the metric D . (Contributed by Thierry Arnoux, 22-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Hypothesis metust.1 F=rana+D-10a
Assertion metustid DPsMetXAFIXA

Proof

Step Hyp Ref Expression
1 metust.1 F=rana+D-10a
2 relres RelIX
3 2 a1i DPsMetXAFRelIX
4 vex qV
5 4 brresi pIXqpXpIq
6 df-br pIXqpqIX
7 4 ideq pIqp=q
8 7 anbi2i pXpIqpXp=q
9 5 6 8 3bitr3i pqIXpXp=q
10 9 biimpi pqIXpXp=q
11 10 ad2antlr DPsMetXAFpqIXa+pXp=q
12 11 simprd DPsMetXAFpqIXa+p=q
13 df-ov pDp=Dpp
14 opeq2 p=qpp=pq
15 14 fveq2d p=qDpp=Dpq
16 13 15 eqtrid p=qpDp=Dpq
17 12 16 syl DPsMetXAFpqIXa+pDp=Dpq
18 simplll DPsMetXAFpqIXa+DPsMetX
19 11 simpld DPsMetXAFpqIXa+pX
20 psmet0 DPsMetXpXpDp=0
21 18 19 20 syl2anc DPsMetXAFpqIXa+pDp=0
22 17 21 eqtr3d DPsMetXAFpqIXa+Dpq=0
23 0xr 0*
24 rpxr a+a*
25 rpgt0 a+0<a
26 lbico1 0*a*0<a00a
27 23 24 25 26 mp3an2i a+00a
28 27 adantl DPsMetXAFpqIXa+00a
29 22 28 eqeltrd DPsMetXAFpqIXa+Dpq0a
30 psmetf DPsMetXD:X×X*
31 30 ffund DPsMetXFunD
32 31 ad3antrrr DPsMetXAFpqIXa+FunD
33 12 19 eqeltrrd DPsMetXAFpqIXa+qX
34 19 33 opelxpd DPsMetXAFpqIXa+pqX×X
35 30 fdmd DPsMetXdomD=X×X
36 35 ad3antrrr DPsMetXAFpqIXa+domD=X×X
37 34 36 eleqtrrd DPsMetXAFpqIXa+pqdomD
38 fvimacnv FunDpqdomDDpq0apqD-10a
39 32 37 38 syl2anc DPsMetXAFpqIXa+Dpq0apqD-10a
40 29 39 mpbid DPsMetXAFpqIXa+pqD-10a
41 40 adantr DPsMetXAFpqIXa+A=D-10apqD-10a
42 simpr DPsMetXAFpqIXa+A=D-10aA=D-10a
43 41 42 eleqtrrd DPsMetXAFpqIXa+A=D-10apqA
44 simplr DPsMetXAFpqIXAF
45 1 metustel DPsMetXAFa+A=D-10a
46 45 ad2antrr DPsMetXAFpqIXAFa+A=D-10a
47 44 46 mpbid DPsMetXAFpqIXa+A=D-10a
48 43 47 r19.29a DPsMetXAFpqIXpqA
49 48 ex DPsMetXAFpqIXpqA
50 3 49 relssdv DPsMetXAFIXA