Metamath Proof Explorer


Theorem mhp0cl

Description: The zero polynomial is homogeneous. (Contributed by SN, 12-Sep-2023)

Ref Expression
Hypotheses mhp0cl.h H = I mHomP R
mhp0cl.0 0 ˙ = 0 R
mhp0cl.d D = h 0 I | h -1 Fin
mhp0cl.i φ I V
mhp0cl.r φ R Grp
mhp0cl.n φ N 0
Assertion mhp0cl φ D × 0 ˙ H N

Proof

Step Hyp Ref Expression
1 mhp0cl.h H = I mHomP R
2 mhp0cl.0 0 ˙ = 0 R
3 mhp0cl.d D = h 0 I | h -1 Fin
4 mhp0cl.i φ I V
5 mhp0cl.r φ R Grp
6 mhp0cl.n φ N 0
7 eqid I mPoly R = I mPoly R
8 eqid 0 I mPoly R = 0 I mPoly R
9 7 3 2 8 4 5 mpl0 φ 0 I mPoly R = D × 0 ˙
10 7 mplgrp I V R Grp I mPoly R Grp
11 4 5 10 syl2anc φ I mPoly R Grp
12 eqid Base I mPoly R = Base I mPoly R
13 12 8 grpidcl I mPoly R Grp 0 I mPoly R Base I mPoly R
14 11 13 syl φ 0 I mPoly R Base I mPoly R
15 9 14 eqeltrrd φ D × 0 ˙ Base I mPoly R
16 fczsupp0 D × 0 ˙ supp 0 ˙ =
17 16 a1i φ D × 0 ˙ supp 0 ˙ =
18 0ss g D | j 0 g j = N
19 17 18 eqsstrdi φ D × 0 ˙ supp 0 ˙ g D | j 0 g j = N
20 1 7 12 2 3 4 5 6 ismhp φ D × 0 ˙ H N D × 0 ˙ Base I mPoly R D × 0 ˙ supp 0 ˙ g D | j 0 g j = N
21 15 19 20 mpbir2and φ D × 0 ˙ H N