Metamath Proof Explorer


Theorem mhpaddcl

Description: Homogeneous polynomials are closed under addition. (Contributed by SN, 26-Aug-2023) Remove closure hypotheses. (Revised by SN, 4-Sep-2025)

Ref Expression
Hypotheses mhpaddcl.h H = I mHomP R
mhpaddcl.p P = I mPoly R
mhpaddcl.a + ˙ = + P
mhpaddcl.r φ R Grp
mhpaddcl.x φ X H N
mhpaddcl.y φ Y H N
Assertion mhpaddcl φ X + ˙ Y H N

Proof

Step Hyp Ref Expression
1 mhpaddcl.h H = I mHomP R
2 mhpaddcl.p P = I mPoly R
3 mhpaddcl.a + ˙ = + P
4 mhpaddcl.r φ R Grp
5 mhpaddcl.x φ X H N
6 mhpaddcl.y φ Y H N
7 eqid Base P = Base P
8 eqid 0 R = 0 R
9 eqid h 0 I | h -1 Fin = h 0 I | h -1 Fin
10 reldmmhp Rel dom mHomP
11 10 1 5 elfvov1 φ I V
12 1 5 mhprcl φ N 0
13 2 mplgrp I V R Grp P Grp
14 11 4 13 syl2anc φ P Grp
15 1 2 7 5 mhpmpl φ X Base P
16 1 2 7 6 mhpmpl φ Y Base P
17 7 3 14 15 16 grpcld φ X + ˙ Y Base P
18 eqid + R = + R
19 2 7 18 3 15 16 mpladd φ X + ˙ Y = X + R f Y
20 19 oveq1d φ X + ˙ Y supp 0 R = X + R f Y supp 0 R
21 ovexd φ 0 I V
22 9 21 rabexd φ h 0 I | h -1 Fin V
23 eqid Base R = Base R
24 23 8 grpidcl R Grp 0 R Base R
25 4 24 syl φ 0 R Base R
26 2 23 7 9 15 mplelf φ X : h 0 I | h -1 Fin Base R
27 2 23 7 9 16 mplelf φ Y : h 0 I | h -1 Fin Base R
28 23 18 8 4 25 grplidd φ 0 R + R 0 R = 0 R
29 22 25 26 27 28 suppofssd φ X + R f Y supp 0 R supp 0 R X supp 0 R Y
30 20 29 eqsstrd φ X + ˙ Y supp 0 R supp 0 R X supp 0 R Y
31 1 8 9 5 mhpdeg φ X supp 0 R g h 0 I | h -1 Fin | fld 𝑠 0 g = N
32 1 8 9 6 mhpdeg φ Y supp 0 R g h 0 I | h -1 Fin | fld 𝑠 0 g = N
33 31 32 unssd φ supp 0 R X supp 0 R Y g h 0 I | h -1 Fin | fld 𝑠 0 g = N
34 30 33 sstrd φ X + ˙ Y supp 0 R g h 0 I | h -1 Fin | fld 𝑠 0 g = N
35 1 2 7 8 9 11 4 12 17 34 ismhp2 φ X + ˙ Y H N