Metamath Proof Explorer


Theorem mhphf2

Description: A homogeneous polynomial defines a homogeneous function; this is mhphf with simpler notation in the conclusion in exchange for a complex definition of .xb , which is based on frlmvscafval but without the finite support restriction ( frlmpws , frlmbas ) on the assignments A from variables to values.

TODO?: Polynomials ( df-mpl ) are defined to have a finite amount of terms (of finite degree). As such, any assignment may be replaced by an assignment with finite support (as only a finite amount of variables matter in a given polynomial, even if the set of variables is infinite). So the finite support restriction can be assumed without loss of generality. (Contributed by SN, 11-Nov-2024)

Ref Expression
Hypotheses mhphf2.q Q = I evalSub S R
mhphf2.h H = I mHomP U
mhphf2.u U = S 𝑠 R
mhphf2.k K = Base S
mhphf2.b ˙ = ringLMod S 𝑠 I
mhphf2.m · ˙ = S
mhphf2.e × ˙ = mulGrp S
mhphf2.i φ I V
mhphf2.s φ S CRing
mhphf2.r φ R SubRing S
mhphf2.l φ L R
mhphf2.n φ N 0
mhphf2.x φ X H N
mhphf2.a φ A K I
Assertion mhphf2 φ Q X L ˙ A = N × ˙ L · ˙ Q X A

Proof

Step Hyp Ref Expression
1 mhphf2.q Q = I evalSub S R
2 mhphf2.h H = I mHomP U
3 mhphf2.u U = S 𝑠 R
4 mhphf2.k K = Base S
5 mhphf2.b ˙ = ringLMod S 𝑠 I
6 mhphf2.m · ˙ = S
7 mhphf2.e × ˙ = mulGrp S
8 mhphf2.i φ I V
9 mhphf2.s φ S CRing
10 mhphf2.r φ R SubRing S
11 mhphf2.l φ L R
12 mhphf2.n φ N 0
13 mhphf2.x φ X H N
14 mhphf2.a φ A K I
15 eqid ringLMod S 𝑠 I = ringLMod S 𝑠 I
16 eqid Base ringLMod S 𝑠 I = Base ringLMod S 𝑠 I
17 rlmvsca S = ringLMod S
18 eqid Scalar ringLMod S = Scalar ringLMod S
19 eqid Base Scalar ringLMod S = Base Scalar ringLMod S
20 fvexd φ ringLMod S V
21 4 subrgss R SubRing S R K
22 10 21 syl φ R K
23 22 11 sseldd φ L K
24 rlmsca S CRing S = Scalar ringLMod S
25 9 24 syl φ S = Scalar ringLMod S
26 25 fveq2d φ Base S = Base Scalar ringLMod S
27 4 26 eqtrid φ K = Base Scalar ringLMod S
28 23 27 eleqtrd φ L Base Scalar ringLMod S
29 4 oveq1i K I = Base S I
30 14 29 eleqtrdi φ A Base S I
31 rlmbas Base S = Base ringLMod S
32 15 31 pwsbas ringLMod S V I V Base S I = Base ringLMod S 𝑠 I
33 20 8 32 syl2anc φ Base S I = Base ringLMod S 𝑠 I
34 30 33 eleqtrd φ A Base ringLMod S 𝑠 I
35 15 16 17 5 18 19 20 8 28 34 pwsvscafval φ L ˙ A = I × L S f A
36 6 eqcomi S = · ˙
37 ofeq S = · ˙ f S = f · ˙
38 36 37 mp1i φ f S = f · ˙
39 38 oveqd φ I × L S f A = I × L · ˙ f A
40 35 39 eqtrd φ L ˙ A = I × L · ˙ f A
41 40 fveq2d φ Q X L ˙ A = Q X I × L · ˙ f A
42 1 2 3 4 6 7 8 9 10 11 12 13 14 mhphf φ Q X I × L · ˙ f A = N × ˙ L · ˙ Q X A
43 41 42 eqtrd φ Q X L ˙ A = N × ˙ L · ˙ Q X A