| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1annig1p.o |  | 
						
							| 2 |  | ply1annig1p.p |  | 
						
							| 3 |  | ply1annig1p.b |  | 
						
							| 4 |  | ply1annig1p.e |  | 
						
							| 5 |  | ply1annig1p.f |  | 
						
							| 6 |  | ply1annig1p.a |  | 
						
							| 7 |  | minplyirred.1 |  | 
						
							| 8 |  | minplyirred.2 |  | 
						
							| 9 |  | minplyirred.3 |  | 
						
							| 10 |  | minplyirredlem.1 |  | 
						
							| 11 |  | minplyirredlem.2 |  | 
						
							| 12 |  | minplyirredlem.3 |  | 
						
							| 13 |  | minplyirredlem.4 |  | 
						
							| 14 |  | minplyirredlem.5 |  | 
						
							| 15 |  | minplyirredlem.6 |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 | 16 | sdrgdrng |  | 
						
							| 18 | 5 17 | syl |  | 
						
							| 19 | 18 | drngringd |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 | 20 2 8 21 | deg1nn0cl |  | 
						
							| 23 | 19 10 14 22 | syl3anc |  | 
						
							| 24 | 23 | nn0red |  | 
						
							| 25 | 20 2 8 21 | deg1nn0cl |  | 
						
							| 26 | 19 11 15 25 | syl3anc |  | 
						
							| 27 | 26 | nn0red |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 |  | eqid |  | 
						
							| 30 |  | fldsdrgfld |  | 
						
							| 31 | 4 5 30 | syl2anc |  | 
						
							| 32 |  | fldidom |  | 
						
							| 33 | 31 32 | syl |  | 
						
							| 34 | 33 | idomdomd |  | 
						
							| 35 |  | eqid |  | 
						
							| 36 | 20 2 8 21 28 35 | deg1ldgdomn |  | 
						
							| 37 | 34 10 14 36 | syl3anc |  | 
						
							| 38 | 20 2 28 21 29 8 19 10 14 37 11 15 | deg1mul2 |  | 
						
							| 39 |  | eqid |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 |  | eqid |  | 
						
							| 42 |  | eqid |  | 
						
							| 43 | 1 2 3 4 5 6 39 40 41 42 7 | minplyval |  | 
						
							| 44 | 12 43 | eqtrd |  | 
						
							| 45 | 44 | fveq2d |  | 
						
							| 46 | 4 | fldcrngd |  | 
						
							| 47 |  | sdrgsubrg |  | 
						
							| 48 | 5 47 | syl |  | 
						
							| 49 | 1 2 3 46 48 6 39 40 | ply1annidl |  | 
						
							| 50 |  | fveq2 |  | 
						
							| 51 | 50 | fveq1d |  | 
						
							| 52 | 51 | eqeq1d |  | 
						
							| 53 | 1 2 21 46 48 | evls1dm |  | 
						
							| 54 | 10 53 | eleqtrrd |  | 
						
							| 55 | 52 54 13 | elrabd |  | 
						
							| 56 | 2 42 21 18 49 20 8 55 14 | ig1pmindeg |  | 
						
							| 57 | 45 56 | eqbrtrd |  | 
						
							| 58 | 38 57 | eqbrtrrd |  | 
						
							| 59 |  | leaddle0 |  | 
						
							| 60 | 59 | biimpa |  | 
						
							| 61 | 24 27 58 60 | syl21anc |  | 
						
							| 62 |  | eqid |  | 
						
							| 63 | 20 2 21 62 | deg1le0 |  | 
						
							| 64 | 63 | biimpa |  | 
						
							| 65 | 19 11 61 64 | syl21anc |  | 
						
							| 66 |  | eqid |  | 
						
							| 67 |  | eqid |  | 
						
							| 68 |  | 0nn0 |  | 
						
							| 69 |  | eqid |  | 
						
							| 70 | 69 21 2 66 | coe1fvalcl |  | 
						
							| 71 | 11 68 70 | sylancl |  | 
						
							| 72 | 20 2 67 21 8 19 11 61 | deg1le0eq0 |  | 
						
							| 73 | 72 | necon3bid |  | 
						
							| 74 | 15 73 | mpbid |  | 
						
							| 75 | 2 62 66 67 31 71 74 | ply1asclunit |  | 
						
							| 76 | 65 75 | eqeltrd |  |