Description: Lemma for mnuprd . (Contributed by Rohan Ridenour, 11-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mnuprdlem2.1 | |
|
mnuprdlem2.4 | |
||
mnuprdlem2.5 | |
||
mnuprdlem2.8 | |
||
Assertion | mnuprdlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnuprdlem2.1 | |
|
2 | mnuprdlem2.4 | |
|
3 | mnuprdlem2.5 | |
|
4 | mnuprdlem2.8 | |
|
5 | eleq1 | |
|
6 | 5 | anbi1d | |
7 | 6 | rexbidv | |
8 | p0ex | |
|
9 | 8 | prid2 | |
10 | 9 | a1i | |
11 | 7 4 10 | rspcdva | |
12 | simpl | |
|
13 | simprl | |
|
14 | simpr | |
|
15 | 0nep0 | |
|
16 | 15 | necomi | |
17 | 16 | a1i | |
18 | 0ex | |
|
19 | 18 | sneqr | |
20 | 19 | eqcomd | |
21 | 3 20 | nsyl | |
22 | 21 | neqned | |
23 | 17 22 | nelprd | |
24 | 23 | adantr | |
25 | 14 24 | elnelneqd | |
26 | 25 | adantrr | |
27 | 26 | adantrl | |
28 | elpri | |
|
29 | 28 1 | eleq2s | |
30 | 29 | ord | |
31 | 13 27 30 | sylc | |
32 | 31 | unieqd | |
33 | snex | |
|
34 | 8 33 | unipr | |
35 | df-pr | |
|
36 | 34 35 | eqtr4i | |
37 | 32 36 | eqtrdi | |
38 | simprrr | |
|
39 | 37 38 | eqsstrrd | |
40 | prssg | |
|
41 | 18 2 40 | sylancr | |
42 | 41 | biimprd | |
43 | 12 39 42 | sylc | |
44 | 43 | simprd | |
45 | eleq2w | |
|
46 | unieq | |
|
47 | 46 | sseq1d | |
48 | 45 47 | anbi12d | |
49 | 11 44 48 | rexlimddvcbvw | |