| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mnuprdlem2.1 |  | 
						
							| 2 |  | mnuprdlem2.4 |  | 
						
							| 3 |  | mnuprdlem2.5 |  | 
						
							| 4 |  | mnuprdlem2.8 |  | 
						
							| 5 |  | eleq1 |  | 
						
							| 6 | 5 | anbi1d |  | 
						
							| 7 | 6 | rexbidv |  | 
						
							| 8 |  | p0ex |  | 
						
							| 9 | 8 | prid2 |  | 
						
							| 10 | 9 | a1i |  | 
						
							| 11 | 7 4 10 | rspcdva |  | 
						
							| 12 |  | simpl |  | 
						
							| 13 |  | simprl |  | 
						
							| 14 |  | simpr |  | 
						
							| 15 |  | 0nep0 |  | 
						
							| 16 | 15 | necomi |  | 
						
							| 17 | 16 | a1i |  | 
						
							| 18 |  | 0ex |  | 
						
							| 19 | 18 | sneqr |  | 
						
							| 20 | 19 | eqcomd |  | 
						
							| 21 | 3 20 | nsyl |  | 
						
							| 22 | 21 | neqned |  | 
						
							| 23 | 17 22 | nelprd |  | 
						
							| 24 | 23 | adantr |  | 
						
							| 25 | 14 24 | elnelneqd |  | 
						
							| 26 | 25 | adantrr |  | 
						
							| 27 | 26 | adantrl |  | 
						
							| 28 |  | elpri |  | 
						
							| 29 | 28 1 | eleq2s |  | 
						
							| 30 | 29 | ord |  | 
						
							| 31 | 13 27 30 | sylc |  | 
						
							| 32 | 31 | unieqd |  | 
						
							| 33 |  | snex |  | 
						
							| 34 | 8 33 | unipr |  | 
						
							| 35 |  | df-pr |  | 
						
							| 36 | 34 35 | eqtr4i |  | 
						
							| 37 | 32 36 | eqtrdi |  | 
						
							| 38 |  | simprrr |  | 
						
							| 39 | 37 38 | eqsstrrd |  | 
						
							| 40 |  | prssg |  | 
						
							| 41 | 18 2 40 | sylancr |  | 
						
							| 42 | 41 | biimprd |  | 
						
							| 43 | 12 39 42 | sylc |  | 
						
							| 44 | 43 | simprd |  | 
						
							| 45 |  | eleq2w |  | 
						
							| 46 |  | unieq |  | 
						
							| 47 | 46 | sseq1d |  | 
						
							| 48 | 45 47 | anbi12d |  | 
						
							| 49 | 11 44 48 | rexlimddvcbvw |  |