Metamath Proof Explorer


Theorem mnuprdlem2

Description: Lemma for mnuprd . (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypotheses mnuprdlem2.1 F=AB
mnuprdlem2.4 φBU
mnuprdlem2.5 φ¬A=
mnuprdlem2.8 φiuFiuuw
Assertion mnuprdlem2 φBw

Proof

Step Hyp Ref Expression
1 mnuprdlem2.1 F=AB
2 mnuprdlem2.4 φBU
3 mnuprdlem2.5 φ¬A=
4 mnuprdlem2.8 φiuFiuuw
5 eleq1 i=iuu
6 5 anbi1d i=iuuwuuw
7 6 rexbidv i=uFiuuwuFuuw
8 p0ex V
9 8 prid2
10 9 a1i φ
11 7 4 10 rspcdva φuFuuw
12 simpl φaFaawφ
13 simprl φaFaawaF
14 simpr φaa
15 0nep0
16 15 necomi
17 16 a1i φ
18 0ex V
19 18 sneqr =A=A
20 19 eqcomd =AA=
21 3 20 nsyl φ¬=A
22 21 neqned φA
23 17 22 nelprd φ¬A
24 23 adantr φa¬A
25 14 24 elnelneqd φa¬a=A
26 25 adantrr φaaw¬a=A
27 26 adantrl φaFaaw¬a=A
28 elpri aABa=Aa=B
29 28 1 eleq2s aFa=Aa=B
30 29 ord aF¬a=Aa=B
31 13 27 30 sylc φaFaawa=B
32 31 unieqd φaFaawa=B
33 snex BV
34 8 33 unipr B=B
35 df-pr B=B
36 34 35 eqtr4i B=B
37 32 36 eqtrdi φaFaawa=B
38 simprrr φaFaawaw
39 37 38 eqsstrrd φaFaawBw
40 prssg VBUwBwBw
41 18 2 40 sylancr φwBwBw
42 41 biimprd φBwwBw
43 12 39 42 sylc φaFaawwBw
44 43 simprd φaFaawBw
45 eleq2w u=aua
46 unieq u=au=a
47 46 sseq1d u=auwaw
48 45 47 anbi12d u=auuwaaw
49 11 44 48 rexlimddvcbvw φBw