Description: Lemma for mnurnd . (Contributed by Rohan Ridenour, 12-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mnurndlem1.3 | |
|
mnurndlem1.4 | |
||
mnurndlem1.6 | |
||
Assertion | mnurndlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnurndlem1.3 | |
|
2 | mnurndlem1.4 | |
|
3 | mnurndlem1.6 | |
|
4 | 1 | ffnd | |
5 | vex | |
|
6 | 5 | prid1 | |
7 | simpr | |
|
8 | 6 7 | eleqtrrid | |
9 | eqid | |
|
10 | id | |
|
11 | prex | |
|
12 | 11 | a1i | |
13 | id | |
|
14 | fveq2 | |
|
15 | 14 | preq1d | |
16 | 13 15 | preq12d | |
17 | 16 | adantl | |
18 | 9 10 12 17 | rr-elrnmpt3d | |
19 | 8 18 | rspcime | |
20 | 19 | rgen | |
21 | ralim | |
|
22 | 3 20 21 | mpisyl | |
23 | prex | |
|
24 | 23 | rgenw | |
25 | eleq2 | |
|
26 | unieq | |
|
27 | 26 | sseq1d | |
28 | 25 27 | anbi12d | |
29 | 9 28 | rexrnmptw | |
30 | 24 29 | ax-mp | |
31 | simplrl | |
|
32 | simpr | |
|
33 | 2 | prid2 | |
34 | elnotel | |
|
35 | 33 34 | ax-mp | |
36 | 35 | a1i | |
37 | 32 36 | elnelneq2d | |
38 | elpri | |
|
39 | 38 | orcomd | |
40 | 39 | ord | |
41 | 31 37 40 | sylc | |
42 | 41 | fveq2d | |
43 | simplrr | |
|
44 | vex | |
|
45 | prex | |
|
46 | 44 45 | unipr | |
47 | 46 | sseq1i | |
48 | unss | |
|
49 | 48 | bicomi | |
50 | 49 | simprbi | |
51 | 47 50 | sylbi | |
52 | fvex | |
|
53 | 52 2 | prss | |
54 | 53 | bicomi | |
55 | 54 | simplbi | |
56 | 43 51 55 | 3syl | |
57 | 42 56 | eqeltrd | |
58 | 57 | ex | |
59 | 58 | rexlimiva | |
60 | 30 59 | sylbi | |
61 | 60 | com12 | |
62 | 61 | ralimia | |
63 | 22 62 | syl | |
64 | fnfvrnss | |
|
65 | 4 63 64 | syl2anc | |