Metamath Proof Explorer


Theorem mnurndlem1

Description: Lemma for mnurnd . (Contributed by Rohan Ridenour, 12-Aug-2023)

Ref Expression
Hypotheses mnurndlem1.3 φF:AU
mnurndlem1.4 AV
mnurndlem1.6 φiAvranaAaFaAivuranaAaFaAiuuw
Assertion mnurndlem1 φranFw

Proof

Step Hyp Ref Expression
1 mnurndlem1.3 φF:AU
2 mnurndlem1.4 AV
3 mnurndlem1.6 φiAvranaAaFaAivuranaAaFaAiuuw
4 1 ffnd φFFnA
5 vex iV
6 5 prid1 iiFiA
7 simpr iAv=iFiAv=iFiA
8 6 7 eleqtrrid iAv=iFiAiv
9 eqid aAaFaA=aAaFaA
10 id iAiA
11 prex iFiAV
12 11 a1i iAiFiAV
13 id a=ia=i
14 fveq2 a=iFa=Fi
15 14 preq1d a=iFaA=FiA
16 13 15 preq12d a=iaFaA=iFiA
17 16 adantl iAa=iaFaA=iFiA
18 9 10 12 17 rr-elrnmpt3d iAiFiAranaAaFaA
19 8 18 rspcime iAvranaAaFaAiv
20 19 rgen iAvranaAaFaAiv
21 ralim iAvranaAaFaAivuranaAaFaAiuuwiAvranaAaFaAiviAuranaAaFaAiuuw
22 3 20 21 mpisyl φiAuranaAaFaAiuuw
23 prex aFaAV
24 23 rgenw aAaFaAV
25 eleq2 u=aFaAiuiaFaA
26 unieq u=aFaAu=aFaA
27 26 sseq1d u=aFaAuwaFaAw
28 25 27 anbi12d u=aFaAiuuwiaFaAaFaAw
29 9 28 rexrnmptw aAaFaAVuranaAaFaAiuuwaAiaFaAaFaAw
30 24 29 ax-mp uranaAaFaAiuuwaAiaFaAaFaAw
31 simplrl aAiaFaAaFaAwiAiaFaA
32 simpr aAiaFaAaFaAwiAiA
33 2 prid2 AFaA
34 elnotel AFaA¬FaAA
35 33 34 ax-mp ¬FaAA
36 35 a1i aAiaFaAaFaAwiA¬FaAA
37 32 36 elnelneq2d aAiaFaAaFaAwiA¬i=FaA
38 elpri iaFaAi=ai=FaA
39 38 orcomd iaFaAi=FaAi=a
40 39 ord iaFaA¬i=FaAi=a
41 31 37 40 sylc aAiaFaAaFaAwiAi=a
42 41 fveq2d aAiaFaAaFaAwiAFi=Fa
43 simplrr aAiaFaAaFaAwiAaFaAw
44 vex aV
45 prex FaAV
46 44 45 unipr aFaA=aFaA
47 46 sseq1i aFaAwaFaAw
48 unss awFaAwaFaAw
49 48 bicomi aFaAwawFaAw
50 49 simprbi aFaAwFaAw
51 47 50 sylbi aFaAwFaAw
52 fvex FaV
53 52 2 prss FawAwFaAw
54 53 bicomi FaAwFawAw
55 54 simplbi FaAwFaw
56 43 51 55 3syl aAiaFaAaFaAwiAFaw
57 42 56 eqeltrd aAiaFaAaFaAwiAFiw
58 57 ex aAiaFaAaFaAwiAFiw
59 58 rexlimiva aAiaFaAaFaAwiAFiw
60 30 59 sylbi uranaAaFaAiuuwiAFiw
61 60 com12 iAuranaAaFaAiuuwFiw
62 61 ralimia iAuranaAaFaAiuuwiAFiw
63 22 62 syl φiAFiw
64 fnfvrnss FFnAiAFiwranFw
65 4 63 64 syl2anc φranFw